A subscription to JoVE is required to view this content. Sign in or start your free trial.
Small ubiquitin-related modifier (SUMO) family proteins are conjugated to the lysine residues of target proteins to regulate various cellular processes. This paper describes a protocol for the detection of retinoblastoma (Rb) protein SUMOylation under endogenous and exogenous conditions in human cells.
The post-translational modifications of proteins are critical for the proper regulation of intracellular signal transduction. Among these modifications, small ubiquitin-related modifier (SUMO) is a ubiquitin-like protein that is covalently attached to the lysine residues of a variety of target proteins to regulate cellular processes, such as gene transcription, DNA repair, protein interaction and degradation, subcellular transport, and signal transduction. The most common approach to detecting protein SUMOylation is based on the expression and purification of recombinant tagged proteins in bacteria, allowing for an in vitro biochemical reaction which is simple and suitable for addressing mechanistic questions. However, due to the complexity of the process of SUMOylation in vivo, it is more challenging to detect and analyze protein SUMOylation in cells, especially when under endogenous conditions. A recent study by the authors of this paper revealed that endogenous retinoblastoma (Rb) protein, a tumor suppressor that is vital to the negative regulation of the cell cycle progression, is specifically SUMOylated at the early G1 phase. This paper describes a protocol for the detection and analysis of Rb SUMOylation under both endogenous and exogenous conditions in human cells. This protocol is appropriate for the phenotypical and functional investigation of the SUMO-modification of Rb, as well as many other SUMO-targeted proteins, in human cells.
The accurate control of cell cycle progression in eukaryotic cells is based on a tight regulatory network, which ensures that particular events take place in an ordered manner1,2. One of the key players in this network is the retinoblastoma (Rb) protein, the first cloned tumor suppressor1,3. The Rb protein is thought to be a negative regulator of cell cycle progression, especially for the G0/G1 to S phase transition, and tumor growth4,5. Failure of Rb function either directly leads to the most common intraocular malignancy in children, retinoblastoma, or contributes to the development of many other types of cancer5. Moreover, Rb is involved in many cellular pathways including cell differentiation, chromatin remodeling, and mitochondria-mediated apoptosis3,6,7.
Post-translational modifications play a pivotal role in the regulation of RB function8,9. Phosphorylation is one such modification, and it usually leads to Rb inactivation. In quiescent G0 cells, Rb is active with a low phosphorylation level. As cells progress through G0/G1 phase, Rb is sequentially hyper-phosphorylated by a series of cyclin-dependent protein kinases (CDKs) and cyclins, such as cyclin E/CDK2 and cyclin D/CDK4/6, which inactivate Rb and eliminate its ability to repress cell-cycle related gene expression4,10. Rb could also be modified by small ubiquitin-related modifier (SUMO)11,12,13.
SUMO is a ubiquitin-like protein that is covalently attached to a variety of target proteins. It is crucial for diverse cellular processes, including cell cycle regulation, transcription, protein cellular localization and degradation, transport, and DNA repair14,15,16,17,18. The SUMO conjugation pathway consists of the dimeric SUMO E1 activating enzyme SAE1/UBA2, the single E2 conjugating enzyme Ubc9, multiple E3 ligases, and SUMO-specific proteases. Generally, nascent SUMO proteins must be proteolytically processed to generate the mature form. The mature SUMO is activated by the E1 heterodimer and then transferred to the E2 enzyme Ubc9. Finally, the C-terminal glycine of SUMO is covalently conjugated to the target lysine of a substrate, and this process is usually facilitated by E3 ligases. The SUMO protein can be removed from the modified substrate by specific proteases. A previous study by the authors of this paper revealed that SUMOylation of Rb increases its binding to CDK2, leading to hyper-phosphorylation at the early G1 phase, a process which is necessary for cell cycle progression13. We also demonstrated that the loss of Rb SUMOylation causes a decreased cell proliferation. Moreover, it was recently demonstrated that the SUMOylation of Rb protects the Rb protein from proteasomal turnover, thus increasing the level of Rb protein in cells19. Therefore, SUMOylation plays an important role in Rb function in various cellular processes. To further study the functional consequence and physiological relevance of Rb SUMOylation, it is important to develop an effective method to analyze the SUMO status of Rb in human cells or patient tissues.
SUMOylation is a reversible, highly dynamic process. Thus, it is usually difficult to detect the SUMO-modified proteins under completely endogenous conditions. This paper presents a method to detect endogenous Rb SUMOylation. Furthermore, it shows how to detect exogenous Rb SUMOylation of both wild-type Rb and its SUMO-deficient mutation11. In particular, Jacobs et al. described a method to increase the SUMO modification of a given substrate specifically by Ubc9 fusion-directed SUMOylation (UFDS)20. Based on this method, this protocol describes how to analyze the forced SUMOylation of Rb and its functional consequences. Given that hundreds of SUMO substrates have been described previously and more putative SUMO substrates have been identified from many proteomic-based assays, this protocol can be applied to analyze the SUMO-modification of these proteins in human cells.
1. Detection of Endogenous Rb SUMOylation at the Early G1 Phase
2. Analysis of 6XHis-tagged Exogenous Rb SUMOylation in Human Cells
3. Western Blot
To detect endogenous Rb SUMOylation during cell cycle progression, this study first synchronized HEK293 cells at five different stages of the cell cycle (G0, early G1, G1, S, and G2/M) as described in the protocol section of this paper. The quality of synchronization was confirmed by using the nucleic acid stain with propidium iodide followed by flow cytometry analysis (Figure 1). Next, the cells were collected and lysed by denaturing RIPA buffer.The SUMO pro...
This paper describes a protocol to detect and analyze the endogenous SUMOylation of Rb in human cells. As this method is specifically focused on the endogenous Rb protein without any alternation of global SUMO-related signal, it is an important tool for investigating Rb-SUMO modification under completely natural physiologic circumstances.
To achieve this aim, it is important to keep in mind that: 1) although SUMO comprises four isoforms (SUMO1-4, each encoded by different genes)in comparison t...
The authors have nothing to disclose.
This study was supported by grants from the Science and Technology Commission of Shanghai (Grant No. 14411961800) and National Natural Science Foundation of China (Grant No. 81300805).
Name | Company | Catalog Number | Comments |
Dulbecco's Modified Eagle Medium (DMEM) | Thermo Fisher Scientific | 11995065 | |
Opti-MEM | Thermo Fisher Scientific | 31985070 | |
Fetal Bovine Serum (FBS) | Thermo Fisher Scientific | 26140079 | |
Penicillin-Streptomycin | Thermo Fisher Scientific | 15140122 | |
Phosphate-buffered Saline (PBS) | Thermo Fisher Scientific | 10010023 | |
Trypsin-EDTA | Thermo Fisher Scientific | 25200056 | |
Thymidine | Sigma | T9250 | |
Nocodazole | Sigma | M1404 | |
propidium iodide | Thermo Fisher Scientific | P3566 | |
Triton X-100 | AMRESCO | 694 | |
RNase A | Thermo Fisher Scientific | EN0531 | |
N-Ethylmaleimide | Sigma | E3876 | |
Sodium Dodecyl Sulfate (SDS) | AMRESCO | M107 | |
Nonidet P-40 Substitute (NP-40) | AMRESCO | M158 | |
protease inhibitor | Roche | 5892970001 | |
Mouse Immunoglobulin G (IgG) | Santa Cruz Biotechnology | sc-2025 | |
Rb antibody | Cell Signaling Technology | #9309 | |
Protein A/G-Sepharose Beads | Santa Cruz Biotechnology | sc-2003 | |
Lipofectamine-2000 | Thermo Fisher Scientific | 11668019 | |
Nickel Nitrilotriacetic Acid (Ni-NTA) Agarose Beads | Qiagen | 30230 | |
Imidazole | Sigma | I0250 | |
4%-20% Gradient SDS-PAGE Gel | BIO-RAD | 4561096 | |
Polyvinylidene Difluoride (PVDF) Membrane | Millipore | IPVH00010 | |
Tween-20 | AMRESCO | M147 | |
Tubulin antibody | Abmart | M30109 | |
SUMO1 antibody | Thermo Fisher Scientific | 33-2044 | |
GFP antibody | Abmart | M20004 | |
Horseradish Peroxidase (HRP) secondary antibody | Jackson ImmunoResearch Laboratories | 715-035-150 | |
enhanced chemiluminescence (ECL) Kit | Thermo Fisher Scientific | 32106 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved