A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Quantitative evaluation of bacterial growth is essential to understanding microbial physiology as a systems-level phenomenon. A protocol for experimental manipulation and an analytical approach are introduced, allowing for precise, high-throughput analysis of bacterial growth, which is a key subject of interest in systems biology.
Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.
Microbiological studies often start with the culture of bacterial cells and the assessment of the bacterial growth curves, which represent a fundamental phenomenon of bacterial physiology1,2,3. Basic culture principles are widely available in the published research literature and textbooks because bacterial culture is a fundamental methodology. At the bench level, substantial attention has traditionally been focused on optimizing growth media and culturing conditions, but controlling the growth rate, which would likely provide even greater understanding of microbial physiology, has not been extensively studied4. For exponentially growing bacteria, a key parameter of the cellular state is the growth rate, which has been reported to be coordinated with the genome, transcriptome, and proteome5,6,7,8. Thus, quantitative evaluation of bacterial growth is crucial for understanding microbial physiology.
To evaluate bacterial growth, the experimental methods used to estimate biomass are well established9,10 and are based on the detection of biochemical, physical, or biological parameters, such as optical turbidity. In addition, the analytical methods used to capture the dynamic properties of growth changes are commonly based on established nonlinear models11,12,13, for example, logistic equations. Growth dynamics are generally acquired by timed sampling of cell growth in culture by either measuring optical turbidity or performing colony-forming unit (CFU) assays. The limitation of these culturing and detection methods is that the data points are not a true reflection of population dynamics because the measurement intervals are often in hours and because the culture condition (e.g., changes in temperature and aeration) is disturbed at the time of sampling. Culture and analysis techniques must be updated using recent developments in technology and understanding. Recent advances in microplate readers allow the real-time observation of bacterial growth and significantly decrease labor costs. Using these advanced devices, the latest studies on bacterial growth have reported analytical methods for high-throughput measurements14,15.
The purpose of this protocol is to evaluate the precise growth dynamics in a high-throughput manner, which will be valuable for quantitative studies that ultimately address the questions of how the growth rate is determined and what factors affect the growth rate. The protocol addresses all factors that should be taken into account for the repeatable and precise quantitation of bacterial growth. The experimental method and analysis are described in detail in the main text. This method permits the precise and reproducible analysis of bacterial growth in a high-throughput manner. Microbiologists can use this protocol to derive additional quantitative results from their experimental evidence. This protocol can also be used for studies in systems biology that attempt to draw conceptual conclusions or to achieve a theoretical overview of growth.
1. Preparing the Growth Medium
NOTE: The chemical composition of minimal medium M63 is as follows: 62 mM K2HPO4, 39 mM KH2PO4, 15 mM (NH4)2SO4, 1.8 µM FeSO4, 15 µM thiamine-HCl, 0.2 mM MgSO4, and 22 mM glucose. M63 is made by mixing three stock solutions: Five X solution, 20% glucose and MgSO4 thiamine solution. Store all solutions at 4 °C.
2. Preparing the Glycerol Stock
3. Acquiring the Growth Curves
4. Data Analysis
5. Confirming the Global Bias of the 96-well Reads (Optional)
NOTE: Both the plate reader and the consumable 96-well plate can cause biased measurements. To achieve highly precise and reproducible quantitative results, confirming the global bias of the 96-well plate is highly recommended.
The described method provides a means to capture dynamic bacterial growth in a continuous, high-throughput manner by utilizing a 96-well format reader that takes multiple optical density measurements at various time intervals (from minutes to hours to days). The growth curves of an assortment of E. coli strains expressing various genomes can be precisely acquired in a single experiment (Figure 1A). In comparison to the described method, the tradition...
Critical steps in the protocol include the preparation of a common stock of exponentially growing cells and the replication of the same samples in multiple wells at various positions on the microplate. Previously, microbiologists started the culture from an overnight pre-culture. While this method may reduce the lag time of bacterial growth, it is difficult to achieve reproducible growth curves. As shown in Figure 2, the independent measurements using the common glycerol stocks resulted in n...
We thank Kohei Tsuchiya for providing the CFU assay example. This work was partially financially supported by a Grant-in-Aid for Scientific Research (C) no. 26506003 (to BWY) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
The authors have nothing to disclose.
Name | Company | Catalog Number | Comments |
K2HPO4 | Wako | 164-04295 | |
KH2PO4 | Wako | 166-04255 | |
(NH4)2SO4 | Wako | 019-03435 | |
MgSO4-7H2O | Wako | 138-00415 | |
Thiamine-HCl | Wako | 201-00852 | |
glucose | Wako | 049-31165 | |
HCl | Wako | 080-01066 | |
Iron (II) sulfate heptahydrate (FeSO4-7H2O) | Wako | 094-01082 | |
KOH | Wako | 168-21815 | |
Glycerol | Wako | 075-00611 | |
Centrifuge tube (50 mL, sterilized) | WATSON | 1342-050S | |
Pipette Tips, 200 µL | WATSON | 110-705Y | |
Pipette Tips, 1,000 µL | WATSON | 110-8040 | |
Microtube (1.5 mL) | WATSON | 131-715C | |
8 multichannel-pipette | WATSON | NT-8200 | |
PASORINA STIRRER | AS ONE | 2-4990-02 | |
Glass cylinder (200 mL) | AS ONE | 1-8562-07 | |
Precision pH mater | AS ONE | AS800 / 1-054-01 | |
Pipetman P-200 | GILSON | 1-6855-05 | |
Pipetman P-1000 | GILSON | 1-6855-06 | |
Disposable Serolocical Pipettes (10 mL) | SANPLATEC | SAN27014 | |
Disposable Serolocical Pipettes (25 mL) | SANPLATEC | SAN27015 | |
Microtube stand | BM Bio | 801-02Y | |
Vortex | BM Bio | BM-V1 | |
Corning Costar 96-well microplate with lid (Flat bottom, Clear) | Sigma-Aldrich | Corning, 3370 | |
Corning Costar reagent reservoir (50 mL) | Sigma-Aldrich | Corning, 4870 | |
Stericup GV PVDF (250 mL, 0.22 µM) | Merck Millipore | SCGVU02RE | |
Pipet-Aid XP | DRUMMOND | 4-000-101 | |
Bioshaker (BR-23UM MR) | TAITEC | 0053778-000 | |
Disposal cell (1.5 mL) | Kartell | 1938 / 2-478-02 | |
DU 730 Life Science UV/Vis Spectrophotometer | Beckman Coulter | A23616 | |
EPOCH2 | BioTek | 2014-EP2-002 / EPOCH2T | |
Beaker (500 mL) | IWAKI | 82-0008 | |
BIO clean bench | Panasonic | MCV-B131F | |
Glass tubes | NICHIDEN RIKA GLASS | P-10M~P-30 /101019 | |
Silicone rubber stoppers | ShinEtsu Polymer | T-19 | |
Bacterial strains | Strain bank organization; National Bio Resource Project (NBRP) in Japan |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved