A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This manuscript describes the procedure to fabricate and characterize Griffithsin-modified poly(lactic-co-glycolic acid) electrospun fibers that demonstrate potent adhesive and antiviral activity against human immunodeficiency virus type 1 infection in vitro. Methods used to synthesize, surface-modify, and characterize the resulting morphology, conjugation, and desorption of Griffithsin from surface-modified fibers are described.
Electrospun fibers (EFs) have been widely used in a variety of therapeutic applications; however, they have only recently been applied as a technology to prevent and treat sexually transmitted infections (STIs). Moreover, many EF technologies focus on encapsulating the active agent, relative to utilizing the surface to impart biofunctionality. Here we describe a method to fabricate and surface-modify poly(lactic-co-glycolic) acid (PLGA) electrospun fibers, with the potent antiviral lectin Griffithsin (GRFT). PLGA is an FDA-approved polymer that has been widely used in drug delivery due to its outstanding chemical and biocompatible properties. GRFT is a natural, potent, and safe lectin that possesses broad activity against numerous viruses including human immunodeficiency virus type 1 (HIV-1). When combined, GRFT-modified fibers have demonstrated potent inactivation of HIV-1 in vitro. This manuscript describes the methods to fabricate and characterize GRFT-modified EFs. First, PLGA is electrospun to create a fiber scaffold. Fibers are subsequently surface-modified with GRFT using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)chemistry. Scanning electron microscopy (SEM) was used to assess the size and morphology of surface-modified formulations. Additionally, a gp120 or hemagglutinin (HA)-based ELISA may be used to quantify the amount of GRFT conjugated to, as well as GRFT desorption from the fiber surface. This protocol can be more widely applied to fabricate fibers that are surface-modified with a variety of different proteins.
The use of EFs as a topical delivery platform has the potential to significantly reduce STIs. Currently, there are over 36 million people living with HIV, with over two million new cases of reported in 2015 alone1,2. Additionally, herpes simplex virus type 2 (HSV-2) infection affects hundreds of millions of people worldwide and has been shown to enhance the acquisition of HIV by 2 - 5 fold3. Due to this relationship between HSV-2 infection and HIV acquisition, there is significant interest in developing new active agents that provide simultaneous protection against multiple STIs. Moreover, the development of new vehicles to improve the delivery of these antiviral agents offers the potential to further enhance protective and therapeutic potency. Toward this goal, EFs have been investigated as a new delivery platform to reduce the prevalence of HIV-1 and HSV-2 infections.
During the past two decades, EFs have been extensively used in the fields of drug delivery and tissue engineering4. Often, biocompatible polymers are selected to easily translate to therapeutic applications. To fabricate polymeric EFs, the selected polymer is dissolved in an organic solvent or aqueous solution, depending on the degree of polymer hydrophobicity5. Active agents of interest are then added to the solvent or aqueous solution prior to the electrospinning process. The polymer solution is then aspirated into a syringe and slowly ejected while subject to an electrical current. This process typically results in polymer fibers with sheet or cylindrical macrostructures (Figure 1), and fiber diameters ranging from the micro- to nano-scale6. For most therapeutic applications, active agents are incorporated within the fibers during the electrospinning process and are released from the fiber via diffusion and subsequent fiber degradation. The rate of degradation or release may be altered by using different types of polymers or polymer blends to establish a desired release profile, imparting unique chemical and physical properties7, and promoting the encapsulation of virtually any compound. As such, EFs have proven beneficial to the delivery of small molecule drugs and biological agents including proteins, peptides, oligonucleotides, and growth factors6,8,9.
In the field of STI prevention, EFs have been recently used to incorporate and provide sustained- or inducible-release of antiviral agents10,11,12,13,14,15,16,17,18,19. In one of the earliest studies, pH-responsive fibers were developed to release active agents in response to environmental changes within the female reproductive tract (FRT), as an on-demand method of protection against HIV-111. Since, other studies have investigated polymer blends comprised of polyethylene oxide (PEO) and poly-L-lactic acid (PLLA), to evaluate the tunable release of antiviral and contraceptive agents for HIV-1 prevention and contraception in vitro12. Additional studies have demonstrated the feasibility of EFs to provide the following: prolonged release of small molecule antivirals14, strong and flexible mechanical properties20, 3-D delivery architectures21, inhibition of sperm penetration12, and the ability to merge with other delivery technologies13. Finally, previous work has evaluated polymeric fibers for the sustained-delivery of antiviral agents against common co-infective viruses, HSV-2 and HIV-114. In this study, polymer fibers provided complementary activity to antiviral delivery by retaining their structure for up to 1 month and providing a physical barrier to viral entry. From these results, it was observed that EFs may be used to both physically and chemically hinder virus infection.
While tunable release properties make polymeric EFs an attractive delivery platform for microbicide delivery, EFs have been developed in other applications to serve as surface-modified scaffolds7. EFs have been used to mimic the morphology of the extracellular matrix (ECM), often acting as scaffolds to improve cellular regeneration22, and enhance their utility in tissue engineering23,24. Fibers comprised of polymers such as poly-ε-caprolactone (PCL) and PLLA have been surface-modified with growth factors and proteins after electrospinning to impart ECM-like properties including increased cellular adhesion and proliferation25,26. Additionally, antimicrobial surface-modified EFs have been evaluated to prevent the growth of specific pathogenic bacteria27,28. Due to this versatility and the ability to induce biological effects, EF technology continues to expand across a variety of fields to provide multi-mechanistic functionality. Yet, despite their utility in a diversity of applications, surface-modified fibers have only recently been explored in the microbicide field29.
In parallel with the development of new delivery technologies to prevent and treat STIs, novel biological therapeutics have been developed. One of the most promising microbicide candidates is the adhesive antiviral lectin, GRFT30. Originally derived from a species of red algae, GRFT has demonstrated activity as a potent inhibitor of HIV, HSV-2, SARS, as well as Hepatitis C virus31,32,33,34,35,36. In fact, among biologically-based inhibitors, GRFT has the most potent anti-HIV activity, inactivating HIV-1 almost immediately upon contact30, while maintaining stability and activity in the presence of culture media from vaginal microbes for up to 10 days37. More recently, a 0.1% GRFT gel was shown to protect mice against intravaginal HSV-2 challenge, making it a promising candidate for the first line of protection against both HSV-2 and HIV-132,38. For HIV specifically, GRFT inhibits infection by physically binding gp120 or terminal mannose N-linked glycan residues on viral envelope surfaces to prevent entry38,39,40,41,42. This inhibition is highly potent, with IC50s approaching 3 ng/mL43. In addition to inhibiting HIV infection, studies have also shown that GRFT protects against HSV-2 infection by inhibiting the cell-to-cell spread of the virus32. In all cases, GRFT has been shown to be adhesive to viral particles, while demonstrating high resistance to denaturation. Last, GRFT has demonstrated synergistic activity with combinations of Tenofovir (TFV) and other antivirals44, making it feasible and likely beneficial to co-administer with EFs. The potent properties of GRFT make it an excellent biologically-based antiviral candidate, in which delivery may be enhanced with EF technology.
Utilizing this knowledge of the adhesive and innate antiviral properties of GRFT, a polymeric fiber scaffold was designed, that integrates these properties to provide the first layer of virus entry inhibition29. Finding inspiration in the way that cervicovaginal mucus hinders virus transport primarily through mucoadhesive mucin interactions, we hypothesized that by using EFs as a scaffold and covalently modifying the surface with GRFT, a high density of surface-conjugated GRFT would debilitate and inactivate virus at its entrypoint45,46,47. Here EFs were developed as a stationary scaffold to provide a protein-based, viral adhesive-inactivating barrier platform. We sought to combine the potent antiviral properties of GRFT with a biocompatible, modifiable, and durable polymer platform, to create a novel virus "trap."
To achieve these goals, fibers comprised of PLGA were electrospun, and EDC-NHS chemistry was used to subsequently modify the EF surface with GRFT. PLGA served as a model polymer due to its extensive use in electrospinning48, combined with its biocompatibility and cost-effectiveness. Additionally, surface modification exploits the large surface area of EFs, and provides a useful alternative that can be combined with encapsulation to maximize fiber utility49. Unlike traditional encapsulation methods where only a portion of GRFT is available (and only transiently present in the FRT), surface modification may enable GRFT to maintain maximum bioactivity during the entire duration of treatment. Furthermore, the incorporation of hydrophilic compounds such as proteins, by traditional electrospinning methods, may result in lower encapsulation efficiencies and loss of protein activity50. Therefore, GRFT surface-modified fibers may offer a promising alternative delivery method that can be used alone or in combination with electrospinning to enhance protection against STI infection.
Access restricted. Please log in or start a trial to view this content.
1. Preparation and Fabrication of the Electrospun Fiber Scaffold
CAUTION: All work with solvents or polymer solutions should be performed in a chemical fume hood. Refer to material safety datasheet of each reagent before starting the protocol.
2. Surface-modification of Fibers with GRFT
3. SEM Characterization of GRFT Surface-modified Fibers
4. Extraction of GRFT from Surface-modified Fibers
5. Measuring GRFT Desorption from Fibers
6. Quantification of GRFT Extraction and Desorption via ELISA
Access restricted. Please log in or start a trial to view this content.
Fiber morphology has a significant effect on the ability of surface-modified EFs to provide protection against viruses. Although electrospinning is a convenient and straightforward procedure, non-optimized polymer formulations may result in irregular fiber morphology (Figure 5B-C). Alterations in electrospinning conditions that result in the formation of beaded or amorphous mat-like morphologies, are often caused by solvent-polymer incompatib...
Access restricted. Please log in or start a trial to view this content.
Due to their porous structures and large surface areas, EFs have found a variety of applications in healthcare, one of which includes serving as therapeutic delivery vehicles. Drugs and other active agents can be incorporated within EFs for tunable delivery, while biologics and chemical ligands can be conjugated to the fiber surface for cell-specific targeting52 or biosensing53. Here the fabrication of GRFT surface-modified PLGA EFs, as a delivery scaffold to prevent HIV in...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We are grateful to the Jewish Heritage Fund for Excellence for funding this research. We thank Dr. Stuart Williams II for generously providing usage of the electrospinning system. We also thank Dr. Kenneth Palmer for providing us with Griffithsin. We additionally thank Dr. Nobuyuki Matoba and his lab for training us in the GRFT ELISA work.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Poly(Lactide-co-Glycolide) (PLGA) 50:50 | Lactel | B6013-2P | |
1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) | Thermo Scientific | 147541000 | |
Blunt Dispensing Needle 18g X 1/2 | Brico Medical Supplies | BN1815 | |
BD 3mL Syringe Luer-lok tip | VWR | 309657 | |
Parafilm (plastic film) | Sigma Aldrich | P7793 | |
2-(N-Morpholino)ethanesulfonic acid (MES Buffer) | Sigma Aldrich | M3671 | |
Sodium Chloride | Sigma Aldrich | S7653 | |
Potassium Chloride | Sigma Aldrich | P9333 | |
Sodium phosphate dibasic | Sigma Aldrich | S7907 | |
Potassium phosphate monobasic | Sigma Aldrich | P0662 | |
Hydroxysuccinimide (NHS) | Thermo Scientific | 24500 | |
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) | Thermo Scientific | 22980 | |
2-Mercaptoethanol | Fisher | BP176 | |
Griffithsin (GRFT) | Kentucky Bioprocessing | NA | custom made, no product number |
Dimethyl Sulfoxide | Milipore | 317275 | |
Polyethylene glycol sorbitan monolaurate (Polysorbate, Tween 20) | Sigma Aldrich | P9416 | |
Tris EDTA Buffer | Sigma Aldrich | 93283 | |
Flat-Bottom Immuno Nonsterile 96-Well Plates | Thermo Scientific | 3355 | |
Influenza Hemagglutinin (HA) | Kentucky Bioprocessing | NA | custom made, no product number |
Goat Anti-GRFT (Primary Antibody) | Kentucky Bioprocessing | NA | custom made, no product number |
Rabbit anti-goat IgG-HRP (Secondary Antibody) | Santa Cruz | 2056 | |
Sure Blue TMB Microwell Peroxidase Substrate | KPL | 52-00-00 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved