A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe fixation, paraffin embedding, and thin sectioning techniques for microbial colony biofilms. In prepared samples, biofilm substructure and reporter expression patterns can be visualized by microscopy.
Sectioning via paraffin embedding is a broadly established technique in eukaryotic systems. Here we provide a method for the fixation, embedding, and sectioning of intact microbial colony biofilms using perfused paraffin wax. To adapt this method for use on colony biofilms, we developed techniques for maintaining each sample on its growth substrate and laminating it with an agar overlayer, and added lysine to the fixative solution. These optimizations improve sample retention and preservation of micromorphological features. Samples prepared in this manner are amenable to thin sectioning and imaging by light, fluorescence, and transmission electron microscopy. We have applied this technique to colony biofilms of Pseudomonas aeruginosa, Pseudomonas synxantha, Bacillus subtilis, and Vibrio cholerae. The high level of detail visible in samples generated by this method, combined with reporter strain engineering or the use of specific dyes, can provide exciting insights into the physiology and development of microbial communities.
Most microbes have the capacity to form biofilms, communities of cells held together by self-produced matrices. Biofilms can be grown in many types of physical setups, with various regimes of nutrient and substrate provision. Specific assays for biofilm formation tend to yield reproducible multicellular structures, and common architectures are observed for phylogenetically diverse species at the community or macroscopic level. When microbes are grown as colonies on solid medium under an atmosphere, macroscopic morphology conveys information about the capacity for matrix production and often correlates with other traits 1,2,3. The internal architecture of microbial colonies can also provide clues regarding biofilm-specific chemistry and physiology, but has been difficult to characterize. Recent applications of cryoembedding and cryosectioning techniques to bacterial colonies have enabled imaging and visualization of specific features at unprecedented resolution 4,5,6. However, studies with animal tissue have shown that paraffin embedding provides superior preservation of morphology when compared to cryoembedding 7 and has been used to visualize bacteria in tissues 8,9. We have therefore developed a protocol for fixation, paraffin embedding, and thin sectioning of microbial colony biofilms. Here, we will describe the preparation of Pseudomonas aeruginosa PA14 colony-biofilm thin sections 10,11, but we have also successfully applied this technique to biofilms formed by the bacteria Pseudomonas synxantha, Bacillus subtilis, and Vibrio cholerae12.
The process of paraffin-embedding and thin-sectioning biofilms follows a simple logic. First, the biofilms are encased in a layer of agar to preserve morphology during processing. Second, the encased-biofilms are submerged in a fixative to crosslink macromolecules and preserve micromorphology. These are then dehydrated with alcohol, cleared with a more non-polar solvent, and then infiltrated with liquid paraffin wax. Once infiltrated, the samples are embedded into wax blocks for sectioning. Sections are cut, mounted on slides, and then rehydrated in order to return them to a more native state. From this point, they can be stained or covered in mounting medium for microscopic analysis.
This protocol produces thin sections of microbial biofilms suitable for histological analysis. Colony biofilm substructures are visible when thin sections prepared using this method are imaged by light microscopy. Biofilms can also be grown on media containing fluorescent stains specific for individual features or stained at the rehydration step, immediately prior to mounting (steps 9.5-9.6). Finally, microbes can be engineered to produce fluorescent proteins in a constitutive or regulated fashion allowing in situ reporting of cell distribution or gene expression within these communities. We have used these methods to determine colony biofilm depth, cell distribution, matrix distribution, growth patterns, and spatiotemporal gene expression.
1. Growth of Pseudomonas aeruginosa Colony Biofilms
2. Preparation of the Fixative Solution
3. Direct Application of Fixative to the Colony Biofilm [Optional]
NOTE: We have found that biofilm morphology is best preserved when the agar overlay is added before fixation. However, this step also constitutes a change in environmental conditions that could affect gene expression. Fluorescent reporter expression patterns should therefore be verified using a separate protocol in which the fixation step is carried out before the addition of the agar overlay, as described here.
4. Overlaying Colonies with Agar
5. Fixation
6. Sample Processing: Buffer Wash, Dehydration, Clearing, and Infiltration
7. Sample Embedding
8. Sectioning
9. Heat-fixing, Rehydration, and Mounting
This method generates biofilm thin-sections wherein distinct morphological features and zones of gene expression can be imaged by DIC, fluorescence microscopy, and TEM. While DIC imaging using a 40X oil immersion objective can be sufficient to show some morphological features (Figure 2E), we have found that fluorescence microscopy of strains engineered to constitutively express fluorescent protein provides enhanced visualization of cell distribution within th...
Paraffin-embedding and thin-sectioning tissue samples is a classic histological technique that enables imaging of micro-morphological structures and is commonly used on eukaryotic tissues, and has been applied with some success to microbial samples8,9. While cryoembedding allows for strong retention of endogenous and immunofluorescent signal, paraffin embedding is generally preferable as it provides better preservation of morphology16. In ...
The authors have nothing to disclose.
This work was supported by NSF CAREER AWARD 1553023 and NIH/NIAID award R01AI103369.
Name | Company | Catalog Number | Comments |
5 3/4" Pasteur pipette | Fisher Scientific | 13-678-6A | Purchased from univeristy biostores |
Agar | Teknova | A7777 | |
Buchner Aspirator (Vacuum) Flask | Pyrex | 5340 | Purchased from univeristy biostores |
Chemically-resistant Marking Pen | VWR | 103051-182 | Manufacturer: Leica |
Clear Fingernail Polish | ******** | ******** | Store bought |
Congo Red Indicator Grade | VWR | AAAB24310-14 | Manufacturer: Alfa Aesar |
Coomassie Blue | VWR | EM-3340 | Manufacturer: EMD Millipore |
TRIS-buffered Mounting Medium (w/ DAPI) | Fisher Scientific | 50 247 04 | Manufacturer: Electron Microscopy Sciences |
Embedding Mold | ******** | ******** | 3D printed in-house |
Embedding Mold (commercial) | Electron Microscopy Sciences | 70182 | |
Ethanol 200P | Decon Labs, Inc. | 2701 | Purchased from univeristy biostores |
Fine-tipped Brush | ******** | ******** | Store bought, paint brush |
Glass Coverslips 60x22mm | Fisher Scientific | 12-519-21C | |
Glass Rehydration Mailer | Ted Pella | 21043 | 20 slide mailer |
Histoclear-II, orange oil-based clearing agent | Fisher Scientific | 50 899 90150 | Manufacturer: National Diagnostics |
Histosette, Embedding Casette | Fisher Scientific | 15 182 701A | |
L-lysine hydrochloride | Fisher Scientific | BP386 100 | |
Low Profile Microtome Blades | Fisher Scientific | 22 210 048 | Manufacturer: Sturkey |
Micropipette | VWR | 89080-004 | Promo-pack |
Micropipette Tips | See comments section | See comments section | p10 (Fisher Scientific, 02 707 469), p200 (VWR, 89079-474), p1250 (VWR, 89079-486) |
Microtome | Fisher Scientific | 905200U/00016050 | Model: HM355S, Manufacturer: Microm, NON-CATALOG, Vendor Catalog # 905200U/00016050 |
Formaldehyde, 37% Aqueous (Formalin) | Ricca Chemical | RSOF0010-500A | |
Paraplast Xtra (paraffin wax) | VWR | 15159-486 | Manufacturer: McCormick Scientific |
Petri Dishes Square 100x100x15mm | Laboratory Disposable Products | D210-16 | |
Potassium chloride | EMD Chemicals | PX1405-1 | Component of phosphate buffered saline, prepared in-house |
Potassium phosphate | Fisher Scientific | P380-500 | Component of phosphate buffered saline, prepared in-house |
Razor Blades | VWR | 55411-050 | Purchased from univeristy biostores |
Slide Warmer | Fisher Scientific | NC0865259 | NON-CATALOG, Vendor Catalog # 12857D |
Sodium chloride | VWR | 0241-1KG | Component of phosphate buffered saline, prepared in-house |
Sodium phosphate | VWR | BDH9296.500 | ,Component of phosphate buffered saline, prepared in-house |
Suprafrost Histology Slides | Fisher Scientific | 12-544-2 | |
Tissue Flotation Water Bath | Fisher Scientific | NC0815797 | Manufacturer: Ted Pella, Vendor Catalog # 28156-B |
Automatic Tissue Processor | Fisher Scientific | 813160U/Q#00009061 | Model: STP120 Tissue Processor |
Tryptone | Teknova | T9012 | |
Yeast extract | Teknova | Y9010 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved