Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a protocol for performing reactions in simple reaction vessels under low-to-moderate pressures of CO2. The reactions can be performed in a variety of vessels simply by administering the carbon dioxide in the form of dry ice, without the need for costly or elaborate equipment or set-ups.

Abstract

Herein is presented a general strategy to perform reactions under mild to moderate CO2 pressures with dry ice. This technique obviates the need for specialized equipment to achieve modest pressures, and can even be used to achieve higher pressures in more specialized equipment and sturdier reaction vessels. At the end of the reaction, the vials can be easily depressurized by opening at room temperature. In the present example CO2 serves as both a putative directing group as well as a way to passivate amine substrates, thereby preventing oxidation during the organometallic reaction. In addition to being easily added, the directing group is also removed under vacuum, obviating the need for extensive purification to remove the directing group. This strategy allows the facile γ-C(sp3)-H arylation of aliphatic amines and has the potential to be applied to a variety of other amine-based reactions.

Introduction

The use of gaseous compounds in chemical reactions typically requires specialized equipment and procedures1,2. At bench scale, some gases can be added directly from a tank using a high pressure regulator3. An alternative method is to condense the gas under cryogenic conditions4,5. Although useful, these strategies require the use of specialized pressure reactors with valves, which can be cost prohibitive for running numerous reactions in parallel. This can therefore greatly slow the rate at which reaction screening can proceed. ....

Protocol

CAUTION: 1) The following protocols have been deemed safe through repeated trials. However, caution should be exercised when sealing vials, throughout the reaction, and especially when opening the reactions, as inhomogeneity in the reaction vials may lead to equipment failure. Vials should be inspected for physical defects prior to use. Vials should be placed behind some form of blast shield or hood sash immediately after sealing to prevent incidents should the vials fail. 2) Although there is little chance for asphyxiat.......

Representative Results

Following these protocols, it is possible to charge a reaction vial with an appropriate amount of carbon dioxide to achieve chemical reactions that require CO2 atmospheres. The pressure achieved in Step 1 is calculated to be approximately 3 atmospheres (see discussion for determination of this value), although due to partial solvation, the observed pressure is in the vicinity of 2 atmospheres at room temperature, and should be approximately 2.6 atmospheres under the reaction co.......

Discussion

Using the van der Waals Equation of State, the approximate pressure of these systems can be calculated45

Eq. 1:          figure-discussion-257

Under the conditions in Protocol 1, we can assume 26.3 mg of CO2 gives n =5.98 x 10-4 mols

Acknowledgements

The authors wish to acknowledge start-up funding from The University of Toledo, as well as funds from the American Chemical Society's Herman Frasch Foundation in partial support of this work. Mr. Thomas Kina is acknowledged for his assistance with developing a suitable pressure gauge for measuring the reaction pressures. Mr. Steve Modar is thanked for useful discussions.

....

Materials

NameCompanyCatalog NumberComments
7.5 mL Sample Vial with Screw Cap (Thermoset)QorpakGLC-00984Can be reused.
40 mL Sample Vial with Screw Cap (Thermoset)QorpakGLC-01039Can be reused.
Pressure Tube, #15 Thread, 7" Long, 25.4 mm O.D.Ace Glass8648-06Can be reused.
Pie-Block for 2 Dram VialsChemGlassCG-1991-P14Can be reused.
Pie-Block for 10 Dram VialsChemGlassCG-1991-P12Can be reused.
3.2 mm PTFE Disposable Stir BarsFisher14-513-93Can be reused.
C-MAG HS 7 Control HotplateIKA20002695
Analytical Weighing BalanceSartoriusQUINTIX2241S
Double-Ended Micro-Tapered SpatulaFisher Scientific21-401-10
Hei-VAP Advantage - Hand Lift Model with G5 Dry Ice Condenser Rotary EvaporatorHeidolph561-01500-00
Bump Trap 14/20 JointChemGlassCG-1322-01
tert-Amyl amineAlfa AesarB24639-14Used as received.
2-Methyl-N-(3-methylbenzyl)butan-2-amineN/AN/APrepared from reductive amination of tert-amyl amine and 3-tolualdehyde in the presence of sodium borohydride in methanol.
Palladium AcetateChem-Impex International, Inc.4898Used as received.
Silver TrifluoroacetateOakwood Chemicals007271Used as received.
Phenyl IodideOakwood Chemicals003461Used as received.
Acetic AcidFisher ChemicalA38Used as received.
1,1,1,3,3,3-HexafluoroisopropanolOakwood Chemicals003409Used as received.
Deionized WaterObtained from in-house deionized water system.
Dry IceCarbonic Enterprises Dry Ice Inc.Non-food grade dry ice.
Concentrated Hydrochloric AcidFisher ChemicalA144SIDiluted to a 1.2 M solution prior to use.
Diethyl Ether, CertifiedFisher ChemicalE138Used as received.
Hexanes, Certified ACSFisher ChemicalH292Used as received.
Saturated Ammonium HydroxideFisher ChemicalA669Used as received.
DichloromethaneFisher ChemicalD37Used as received.
Sodium Sulfate, AnhydrousOakwood Chemicals044702Used as received.
250 mL Separatory FunnelPrepared in-house by staff glassblower.
100 mL Round Bottom FlaskPrepared in-house by staff glassblower.
Scientific Disposable FunnelCaplugs2085136030
Borosilicate Glass Scintillation Vials, 20 mLFisher Scientific03-337-15
5 mm O.D. Thin Walled Precision NMR TubesWilmad666000575
Chloroform-dCambridge Isotope Laboratories, Inc.DLM-7Used as received.

References

  1. Verboom, W. Selected Examples of High-Pressure Reactions in Glass Microreactors. Chemical Engineering and Technology. 32 (11), 1695-1701 (2009).
  2. Schettino, V., Bini, R. Constraining Molecules at the Closest App....

Explore More Articles

Dry IceCO2 AtmosphereSynthetic Organic ChemistryCarbon DioxideSolid CO2 SourceModerate PressuresSealed VesselsCH ArylationCH CapitulationEpoxidesSyntha CarbonatesPalladium AcetateSilver TrifluoroacetatePhenyl IodideTert amylamineAcetic AcidDeionized WaterPTFE CapRoom TemperatureElevated Temperature

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved