JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Achieving Moderate Pressures in Sealed Vessels Using Dry Ice As a Solid CO2 Source

Published: August 17th, 2018



1Department of Chemistry and Biochemistry, University of Toledo, 2School of Green Chemistry and Engineering, University of Toledo
* These authors contributed equally

Here we present a protocol for performing reactions in simple reaction vessels under low-to-moderate pressures of CO2. The reactions can be performed in a variety of vessels simply by administering the carbon dioxide in the form of dry ice, without the need for costly or elaborate equipment or set-ups.

Herein is presented a general strategy to perform reactions under mild to moderate CO2 pressures with dry ice. This technique obviates the need for specialized equipment to achieve modest pressures, and can even be used to achieve higher pressures in more specialized equipment and sturdier reaction vessels. At the end of the reaction, the vials can be easily depressurized by opening at room temperature. In the present example CO2 serves as both a putative directing group as well as a way to passivate amine substrates, thereby preventing oxidation during the organometallic reaction. In addition to being easily added, the directing group is also removed under vacuum, obviating the need for extensive purification to remove the directing group. This strategy allows the facile γ-C(sp3)-H arylation of aliphatic amines and has the potential to be applied to a variety of other amine-based reactions.

The use of gaseous compounds in chemical reactions typically requires specialized equipment and procedures1,2. At bench scale, some gases can be added directly from a tank using a high pressure regulator3. An alternative method is to condense the gas under cryogenic conditions4,5. Although useful, these strategies require the use of specialized pressure reactors with valves, which can be cost prohibitive for running numerous reactions in parallel. This can therefore greatly slow the rate at which reaction screening can proceed. ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

CAUTION: 1) The following protocols have been deemed safe through repeated trials. However, caution should be exercised when sealing vials, throughout the reaction, and especially when opening the reactions, as inhomogeneity in the reaction vials may lead to equipment failure. Vials should be inspected for physical defects prior to use. Vials should be placed behind some form of blast shield or hood sash immediately after sealing to prevent incidents should the vials fail. 2) Although there is little chance for asphyxiat.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Following these protocols, it is possible to charge a reaction vial with an appropriate amount of carbon dioxide to achieve chemical reactions that require CO2 atmospheres. The pressure achieved in Step 1 is calculated to be approximately 3 atmospheres (see discussion for determination of this value), although due to partial solvation, the observed pressure is in the vicinity of 2 atmospheres at room temperature, and should be approximately 2.6 atmospheres under the reaction co.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using the van der Waals Equation of State, the approximate pressure of these systems can be calculated45

Eq. 1:          Equation

Under the conditions in Protocol 1, we can assume 26.3 mg of CO2 gives n =5.98 x 10-4 mols

Equation 1b

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors wish to acknowledge start-up funding from The University of Toledo, as well as funds from the American Chemical Society's Herman Frasch Foundation in partial support of this work. Mr. Thomas Kina is acknowledged for his assistance with developing a suitable pressure gauge for measuring the reaction pressures. Mr. Steve Modar is thanked for useful discussions.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
7.5 mL Sample Vial with Screw Cap (Thermoset) Qorpak GLC-00984 Can be reused.
40 mL Sample Vial with Screw Cap (Thermoset) Qorpak GLC-01039 Can be reused.
Pressure Tube, #15 Thread, 7" Long, 25.4 mm O.D. Ace Glass 8648-06 Can be reused.
Pie-Block for 2 Dram Vials ChemGlass CG-1991-P14 Can be reused.
Pie-Block for 10 Dram Vials ChemGlass CG-1991-P12 Can be reused.
3.2 mm PTFE Disposable Stir Bars Fisher 14-513-93 Can be reused.
C-MAG HS 7 Control Hotplate IKA 20002695
Analytical Weighing Balance Sartorius QUINTIX2241S
Double-Ended Micro-Tapered Spatula Fisher Scientific 21-401-10
Hei-VAP Advantage - Hand Lift Model with G5 Dry Ice Condenser Rotary Evaporator Heidolph 561-01500-00
Bump Trap 14/20 Joint ChemGlass CG-1322-01
tert-Amyl amine Alfa Aesar B24639-14 Used as received.
2-Methyl-N-(3-methylbenzyl)butan-2-amine N/A N/A Prepared from reductive amination of tert-amyl amine and 3-tolualdehyde in the presence of sodium borohydride in methanol.
Palladium Acetate Chem-Impex International, Inc. 4898 Used as received.
Silver Trifluoroacetate Oakwood Chemicals 007271 Used as received.
Phenyl Iodide Oakwood Chemicals 003461 Used as received.
Acetic Acid Fisher Chemical A38 Used as received.
1,1,1,3,3,3-Hexafluoroisopropanol Oakwood Chemicals 003409 Used as received.
Deionized Water Obtained from in-house deionized water system.
Dry Ice Carbonic Enterprises Dry Ice Inc. Non-food grade dry ice.
Concentrated Hydrochloric Acid Fisher Chemical A144SI Diluted to a 1.2 M solution prior to use.
Diethyl Ether, Certified Fisher Chemical E138 Used as received.
Hexanes, Certified ACS Fisher Chemical H292 Used as received.
Saturated Ammonium Hydroxide Fisher Chemical A669 Used as received.
Dichloromethane Fisher Chemical D37 Used as received.
Sodium Sulfate, Anhydrous Oakwood Chemicals 044702 Used as received.
250 mL Separatory Funnel Prepared in-house by staff glassblower.
100 mL Round Bottom Flask Prepared in-house by staff glassblower.
Scientific Disposable Funnel Caplugs 2085136030
Borosilicate Glass Scintillation Vials, 20 mL Fisher Scientific 03-337-15
5 mm O.D. Thin Walled Precision NMR Tubes Wilmad 666000575
Chloroform-d Cambridge Isotope Laboratories, Inc. DLM-7 Used as received.

  1. Verboom, W. Selected Examples of High-Pressure Reactions in Glass Microreactors. Chemical Engineering and Technology. 32 (11), 1695-1701 (2009).
  2. Schettino, V., Bini, R. Constraining Molecules at the Closest Approach: Chemistry at High Pressure. Chemical Society Reviews. 36, 869-880 (2007).
  3. Hemminger, O., Marteel, A., Mason, M. R., Davies, J. A., Tadd, A. R., Abraham, M. A. Hydroformylation of 1-Hexene in Supercritical Carbon Dioxide Using a Heterogeneous Rhodium Catalyst. 3. Evaluation of Solvent Effects. Green Chemistry. 4, 507-512 (2002).
  4. Mo, F., Dong, G. Regioselective Ketone α-Alkylation with Simple Olefins via Dual Activation. Science. 345 (6192), 68-72 (2014).
  5. Schultz, A. G., Kirincich, S. J., Rahm, R. Asymmetric Organic Synthesis. Preparation and Birch Reduction-Alkylation of 2-Methyl-3,4-Dihydroisoquinolin-1-ones. Tetrahedron Letters. 36 (26), 4551-4554 (1995).
  6. Dong, L., Aleem, S., Fink, C. A. Microwave-Accelerated Reductive Amination Between Ketones and Ammonium Acetate. Tetrahedron Letters. 51 (39), 5210-5212 (2010).
  7. Wang, D., Astruc, D. The Golden Age of Transfer Hydrogenation. Chemical Reviews. 115 (13), 6621-6686 (2015).
  8. Morimoto, T., Kakiuchi, K. Evolution of Carbonylation Catalysis: No Need for Carbon Monoxide. Angewandte Chemie International Edition in English. 43 (42), 5580-5588 (2004).
  9. Iranpoor, N., Firouzabadi, H., Motevalli, S., Talebi, M. Palladium-Free Aminocarbonylation of Aryl, Benzyl, and Styryl Iodides and Bromides by Amines Using Mo(CO)6 and Norbornadiene. Tetrahedron. 69 (1), 418-426 (2013).
  10. Ren, W., Yamane, M. Mo(CO)6-Mediated Carbamoylation of Aryl Halides. Journal of Organic Chemistry. 75 (24), 8410-8415 (2010).
  11. Wang, H., Dong, B., Wang, Y., Li, J., Shi, Y. A Palladium-Catalyzed Regioselective Hydroesterification of Alkenylphenols to Lactones with Phenyl Formate as CO Source. Organic Letters. 16 (1), 186-189 (2014).
  12. Zhang, Y., Chen, J. -. L., Chen, Z. -. B., Zhu, Y. -. M., Ji, S. -. J. Palladium-Catalyzed Carbonylative Annulation Reactions Using Aryl Formate as a CO Source: Synthesis of 2-Substituted Indene-1,3(2H)-Dione Derivatives. Journal of Organic Chemistry. 80 (21), 10643-10650 (2015).
  13. Wan, Y., Alterman, M., Larhed, M., Hallberg, A. Dimethylformamide as a Carbon Monoxide Source in Fast Palladium-Catalyzed Aminocarbonylations of Aryl Bromides. Journal of Organic Chemistry. 67 (17), 6232-6235 (2002).
  14. Gockel, S. N., Hull, K. L. Chloroform as a Carbon Monoxide Precursor: In or Ex Situ Generation of CO for Pd-Catalyzed Aminocarbonylations. Organic Letters. 17 (13), 3236-3239 (2015).
  15. Zhao, H., Du, H., Yuan, X., Wang, T., Han, W. Iron-Catalyzed Carbonylation of Aryl Halides with Arylborons Using Stoichiometric Chloroform as the Carbon Monoxide Source. Green Chemistry. 18, 5782-5787 (2016).
  16. Chen, P., Xu, C., Yin, H., Gao, X., Qu, L. Shock Induced Conversion of Carbon Dioxide to Few Layer Graphene. Carbon. , 471-476 (2017).
  17. Iijima, T., Yamaguchi, T. Efficient Regioselective Carboxylation of Phenol to Salicylic Acid with Supercritical CO2 in the Presence of Alumnium Bromide. Journal of Molecular Catalysis A: Chemical. 295 (1-2), 52-56 (2008).
  18. Jevtovikj, I., Manzini, S., Hanauer, M., Rominger, F., Schaub, T. Investigations on the Catalytic Carboxylation of Olefins with CO2 Towards α, β-Unsaturated Carboxylic Acid Salts: Characterization of Intermediates and Ligands as well as Substrate Effects. Dalton Transactions. 44, 11083-11094 (2015).
  19. Juliá-Hernández, F., Moragas, T., Cornella, J., Martin, R. Remote Carboxylation of Halogenated Aliphatic Hydrocarbons with Carbon Dioxide. Nature. 545, 84-88 (2017).
  20. North, M., Pasquale, R. Mechanism of Cyclic Carbonate Synthesis from Epoxides and CO2. Angewandte Chemie International Edition. 48 (16), 2946-2948 (2009).
  21. Yeung, C. S., Dong, V. M. Beyond Aresta's Complex: Ni- and Pd-Catalyzed Organozinc Coupling to CO2. Journal of the American Chemical Society. 130 (25), 7826-7827 (2008).
  22. Zhu, D. -. Y., Fang, L., Han, H., Wang, Y., Xia, J. -. B. Reductive CO2 Fixation via Tandem C-C and C-N Bond Formation: Synthesis of Spiro-Indopyrrolidines. Organic Letters. 19 (16), 4259-4262 (2017).
  23. Kapoor, M., Liu, D., Young, M. C. Carbon Dioxide Mediated C(sp3)–H Arylation of Amine Substrates. J. Am. Chem. Soc. , (2018).
  24. Zhang, Y. -. F., Zhao, H. -. W., Wang, H., Wei, J. -. B., Shi, Z. -. J. Readily Removable Directing Group Assisted Chemo- and Regioselective C(sp3)-H Activation by Palladium Catalysis. Angewandte Chemie International Edition. 54 (46), 13686-13690 (2015).
  25. He, G., Chen, G. A Practical Strategy for the Structural Diversification of Aliphatic Scaffolds Through the Palladium-Catalyzed Picolinamide-Directed Remote Functionalization of Unactivated C(sp3)-H Bonds. Angewandte Chemie International Edition. 50 (22), 5192-5196 (2011).
  26. Nack, W. A., Wang, X., Wang, B., He, G., Cheng, G. Palladium-Catalyzed Picolinamide-Directed Iodination of Remote ortho-C-H Bonds of Arenes: Synthesis of Tetrahydroquinolines. Beilstein Journal of Organic Chemistry. 12, 1243-1249 (2016).
  27. Feng, P., Li, M., Ge, H. Room Temperature Palladium-Catalyzed Decarboxylative ortho-Acylation of Acetanilides with α-Oxocarboxylic Acids. Journal of the American Chemical Society. 132 (34), 11898-11899 (2010).
  28. Coomber, C. E., Benhamou, L., Bučar, D. -. K., Smith, P. D., Porter, M. J., Sheppard, T. D. Silver-Free Palladium-Catalyzed C(sp3)-H Arylation of Saturated Bicyclic Amine Scaffolds. Journal of Organic Chemistry. 83 (5), 2495-2503 (2018).
  29. Mei, T. -. S., Wang, X., Yu, J. -. Q. Pd(II)-Catalyzed Amination of C-H Bonds Using Single-Electron or Two-Electron Oxidants. Journal of the American Chemical Society. 131 (31), 10806-10807 (2009).
  30. Xie, W., Yang, J., Wang, B., Li, B. Regioselective Ortho Olefination of Aryl Sulfonamide via Rhodium-Catalyzed Direct C-H Bond Activation. Journal of Organic Chemistry. 79 (17), 8278-8287 (2014).
  31. Rodriguez, N., Romero-Revilla, J. A., Fernández-Ibáñez, M. &. #. 1. 9. 3. ;., Carretero, J. C. Palladium-Catalyzed N-(2-pyridyl)sulfonyl-Directed C(sp3)-H γ-Arylation of Amino Acid Derivatives. Chemical Science. 4, 175-179 (2013).
  32. Zheng, Y., Song, W., Zhu, Y., Wei, B., Xuan, L. Pd-Catalyzed Acetoxylation of γ-C(sp3)-H Bonds of Amines Directed by a Removable Bts-Protecting Group. Journal of Organic Chemistry. 83 (4), 2448-2454 (2018).
  33. Jain, P., Verma, P., Xia, G., Yu, J. -. Q. Enantioselective Amine α-Functionalization Via Palladium-Catalysed C-H Arylation of Thioamides. Nature Chemistry. 9, 140-144 (2017).
  34. Tran, A. T. Practical Alkoxythiocarbonyl Auxiliaries for Ir(I)-Catalyzed C-H Alkylation of Azacycles. Angewandte Chemie International Edition. 56 (35), 10530-10534 (2017).
  35. Huang, Z., Wang, C., Dong, G. A Hydrazone-Based exo-Directing Group Strategy for β-C-H Oxidation of Aliphatic Amines. Angewandte Chemie International Edition. 55 (17), 5299-5303 (2016).
  36. Xu, Y., Young, M. C., Wang, C., Magness, D. M., Dong, G. Catalytic C(sp3)-H Arylation of Free Primary Amines via an in situ Generated Exo-Directing Group. Chemie International Edition. 55 (31), 9084-9087 (2016).
  37. Liu, Y., Ge, H. Site-Selective C-H Arylation of Primary Aliphatic Amines Enabled by a Catalytic Transient Directing Group. Nature Chemistry. 9, 26-32 (2017).
  38. Wu, Y., Chen, Y. -. Q., Liu, T., Eastgate, M. D., Yu, J. -. Q. Pd-Catalyzed γ-C(sp3)-H Arylation of Free Amines Using a Transient Directing Group. Journal of the American Chemical Society. 138 (44), 14554-14557 (2016).
  39. Yada, A., Liao, W., Sato, Y., Murakami, M. Buttressing Salicylaldehydes: A Multipurpose Directing Group for C(sp3)-H Bond Activation. Angewandte Chemie International Edition. 56 (4), 1073-1076 (2017).
  40. Baldwin, B. W., Kuntzleman, T. S. Liquid CO2 in Centrifuge Tubes: Separation of Chamazulene from Blue Tansy (Tanacetum annum) Oil via Extraction and Thin-Layer Chromatography. Journal of Chemical Education. 95 (4), 620-624 (2018).
  41. McKenzie, L. C., Thompson, J. E., Sullivan, R., Hutchison, J. E. Green Chemical Processing in the Teaching Laboratory: A Convenient Liquid CO2 Extraction of Natural Products. Green Chemistry. 6, 355-358 (2004).
  42. Hudson, R., Ackerman, H. M., Gallo, L. K., Gwinner, A. S., Krauss, A., Sears, J. D., Bishop, A., Esdale, K. N., Katz, J. L. CO2 Dry Cleaning: A Benign Solvent Demonstration Accessible to K-8 Audiences. Journal of Chemical Education. 94, 480-482 (2017).
  43. Barcena, H., Chen, P. An Anesthetic Drug Demonstration and an Introductory Antioxidant Activity Experiment with "Eugene, the Sleepy Fish.&#34. Journal of Chemical Education. 93, 202-205 (2016).
  44. Bodsgard, B. R., Lien, N. R., Waulters, Q. T. Liquid CO2 Extraction and NMR Characterization of Anethole from Fennel Seed: A General Chemistry Laboratory. Journal of Chemical Education. 93, 397-400 (2016).
  45. Fishbane, P. M., Gasiorowicz, S. G., Thornton, S. T. . Physics for Scientists and Engineers. , (2005).
  46. Rumpf, B., Xia, J., Maurer, G. Solubility of Carbon Dioxide in Aqueous Solutions Containing Acetic Acid or Sodium Hydroxide in the Temperature Range from 313 to 433 K and at Total Pressures up to 10 MPa. Industrial & Engineering Chemistry Research. 37, 2012-2019 (1998).
  47. Luo, J., Larrosa, I. C-H Carboxylation of Aromatic Compounds Through CO2 Fixation. ChemSusChem: Chemistry & Sustainability, Energy & Materials. 10, 3317-3332 (2017).
  48. Manjolinho, F., Arndt, M., Gooßen, K., Gooßen, L. J. Catalytic C-H Carboxylation of Terminal Alkynes with Carbon Dioxide. ACS Catalysis. 2, 2014-2021 (2012).
  49. Banerjee, A., Dick., G. R., Yoshino, T., Kanan, M. W. Carbon Dioxide Utilization via Carbonate-Promoted C-H Carboxylation. Nature. 531, 215-219 (2016).
  50. Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P., Cohen, S. M. Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework. Inorganic Chemistry. 54, 6821-6828 (2015).
  51. Chabolla, S. A., Yang, J. Y. For CO2 Reduction, Hydrogen-Bond Donors Do the Trick. ACS Central Science. 4, 315-317 (2018).
  52. Kim, D., Kley, C. S., Li, Y., Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2-C3 Products. Proceedings of the National Academy of Sciences of the United States of America. , C2-C3 (2017).
  53. Liu, Q., Wu, L., Jackstell, R., Beller, M. Using carbon dioxide as a building block in organic synthesis. Nature Communications. 6, 5933-5945 (2015).
  54. Hâncu, D., Green, J., Beckman, E. J. H2O2 in CO2 Sustainable Production and Green Reactions. Accounts of Chemical Research. 35, 757-764 (2002).
  55. Ballivet-Tkatchenko, D., Camy, S., Condoret, J. S., Lichtofouse, E., Scwarzbauer, J., Robert, D. Carbon Dioxide, a Solvent and Synthon for Green Chemistry. Environmental Chemistry. , 541-552 (2005).
  56. Hyatt, J. A. Liquid and Supercritical Carbon Dioxide as Organic Solvents. Journal of Organic Chemistry. 49, 5097-5101 (1984).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved