A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a protocol to induce atherosclerosis in the aortic root of ApoE-/- mice fed with an atherogenic diet, through a continuous release of aldosterone. Methods to characterize plaque composition are also described.
Atherosclerosis is due to a chronic inflammatory response affecting vascular endothelium and is promoted by several factors such as hypertension, dyslipidemia, and diabetes. To date, there is evidence to support a role for circulating aldosterone as a risk factor for the development of cardiovascular disease. Transgenic mouse models have been generated to study cellular and molecular processes leading to atherosclerosis. In this manuscript, we describe a protocol that takes advantage of continuous infusion of aldosterone in ApoE-/- mice and generates atherosclerotic plaques in the aortic root after 4 weeks of treatment. We, therefore, illustrate a method for quantification and characterization of atherosclerotic lesions at the aortic root level. The added value of aldosterone infusion is represented by the generation of atherosclerotic lesions rich in lipid and inflammatory cells after 4 weeks of treatment. We describe in detail the staining procedures to quantify lipid and macrophage content within the plaque. Notably, in this protocol, we perform heart tissue-embedding in OCT in order to preserve the antigenicity of cardiac tissue and facilitate detectability of antigens of interest. Analysis of the plaque phenotype represents a valid approach to study the pathophysiology of atherosclerosis development and to identify novel pharmacological targets for the development of anti-atherogenic drugs.
Atherosclerosis is one of the main causes of mortality and morbidity worldwide1. It is characterized by a chronic inflammatory state where blood vessels are infiltrated by lipids and leukocytes that determine the formation of atherosclerotic plaques. The majority of acute cardiac events are associated with thrombotic events due to plaque rupture. Plaques prone to rupture are defined "vulnerable" and are characterized by increased infiltration of pro-inflammatory leukocytes, a necrotic core, and a thin fibrous cap2. In the last decades, clinical and experimental studies have clarified the complex pathophysiology of the disease. Several animal models are used to investigate the molecular mechanisms involved in the induction of atherosclerosis3. Currently, the mouse is the most frequently used species to study atherosclerosis despite some species-specific differences existing in its pathophysiology in comparison with humans. In particular, circulating cholesterol is mainly composed by high-density lipoproteins (with antiatherogenic properties) in mouse models, while in humans circulating cholesterol is mainly transported as low-density lipoproteins (LDL), probably representing the main reason why wild-type mice do not develop spontaneous atherosclerosis4. Furthermore, wild type mice are generally resistant to absorbing cholesterol from the diet, whereas humans absorb around 50% of dietary cholesterol4. To overcome these limitations, several genetically modified mouse models have been generated. Apolipoprotein E–deficient mouse (ApoE−/−) and LDL receptor–deficient mouse (LDLr−/−) are widely used. On a high-fat high cholesterol diet, ApoE−/− mice develop plaque more rapidly compared to LDLr−/−mice, and for this reason, the use of ApoE−/− mice is more widespread than that of LDLr−/−mice5,6. The ApoE−/− mice develop lesions at any stage of atherosclerosis and are comparable to those observed in humans, although mouse plaques do not show an unstable phenotype7. Generally, ApoE−/− mice spontaneously develop atherosclerosis and this process is accelerated with a western diet3. The severity of atherosclerosis can be evaluated at the level of the carotid, pulmonary, femoral and brachiocephalic artery, and the aortic root6. In particular, the aortic root represents an anatomical site prone to develop atherosclerotic lesions in mice. For this reason, it is common practice to evaluate the formation of atherosclerotic plaques in this region.
Several studies have shown that aldosterone is implicated in the development of atherosclerosis8,9,10. Aldosterone infusion in ApoE−/− mice fed an atherogenic diet accelerates the development of aortic root atherosclerotic lesions inducing inflamed and lipid-rich plaque formation10.
In summary, we describe a protocol including aldosterone infusion, atherogenic diet feeding, embedding of heart tissues, quantification and characterization of atherosclerotic lesions in ApoE-/- mice. This procedure promotes an efficient formation of inflamed, lipid-rich atherosclerotic plaques and represents a valuable model for the study of atherogenesis.
The study was approved by the Italian National Institutes of Health Care and Use Committees, authorization number 493/2016-PR. All procedures were conducted per the guidelines of the European Community for the use of experimental animals (European Directive, 2010/63/UE).
Note: Subcutaneous implantation of osmotic minipump containing vehicle (ethanol in saline solution) or aldosterone (240 µg · kg-1 · d-1) in 8-10 week-old male mice deficient for the ApoE gene. In general, 8-10 week-old male ApoE−/− mice weigh around 25-26 g.
1. Dissolving Aldosterone
2. Osmotic Pump Filling and Implantation
Note: Pumps are supplied in two separate parts: the main body of the pump and the flow regulator.
3. Dissection of the Heart
4. Cutting sections of the Aortic Root
5. Immunohistochemistry
Note: All staining steps reported in the following protocols are performed in glass Coplin staining jars.
6. Image Analysis of Atherosclerotic Lesions in Aortic Root Sections
Note: Aortic root sections stained with Oil Red O or MAC3 or an antibody of interest can be analyzed using appropriate software (indicated in Table of Materials). Total pixels staining positive for the component of interest is normalized to the overall plaque area. Images were collected and analyzed by a treatment-blinded investigator.
In 8-10 weeks Apo-/- mice, minipumps were implanted to infuse with vehicle or aldosterone (Figure 1E-1I) and fed an atherogenic diet (adjusted calories diet 42% from fat) for 4 weeks. At the end of treatment, mice were euthanized and perfused with PBS and 10% formalin as described above. The aortic root was separated from the apical portion of the heart and was embedded in OCT (Figure 2). Cross section...
Atherosclerosis is a chronic inflammatory disorder associated with large and medium vessels involving interactions between multiple cell types, such as macrophages, T-lymphocytes, endothelial cells and smooth muscle cells1. Despite the limitations of murine atherogenic models, a large body of evidence on the atherosclerotic process is available. These models have the advantage of rapidly generating experimental cohorts of a specific age and gender. Mice also show a defined and homogeneous genetic ...
The authors have nothing to disclose.
This work was supported by grants from the Italian Ministry of Health (Ricerca Corrente, GR-2009-1594563 and PE-2011-02347070 to M.C.)
Name | Company | Catalog Number | Comments |
Adjusted calories diet (42 % from fat) | Envigo | TD.88137 | atherogenic diet |
Osmotic minipump with filling tube | Alzet | model 1004 | for continous realase |
Aldosterone | SIGMA | A9477 | hormone |
Ethanol | SIGMA | 34852-M | solvent |
Alchol Preps saturated with 70 % Isopropyl Alcohol | Kendal Webcol | 6818 | Disinfectant |
Surgery wire (Vicryl 6.0) | Demas | 500004 | surgery |
10% Povidone/iodine ointment | Aplicare-Meriden | 52380-0026-1 | Antiseptic |
Formalin 10% | SIGMA | HT5012 | to fix vascolature |
Cryomold | Bio-Optica | 07-MP1515 | for embedding |
O.C.T. Compound | Sakura Finetek | 4583 | for embedding |
Cryostat | Leica | CM1900 | instrument for sectioning |
Dulbecco's Phosphat Buffered Saline | Aurogene | AU-L0615-500 | buffer solution |
Adhesion Slides Polysine | VWR | 631-0107 | microscope glasses |
Cover Glasses | Bio-Optica | 72015 | cover glasses |
Formaldehyde 37% | SIGMA | 252549 | solvent |
Oil Red O solution (0.5 % in isopropanol) | SIGMA | O1391 | staining solution |
Mayer’s Hematoxylin | SIGMA | MHS32 | staining solution |
Lithium Carbonate | SIGMA | 62470 | washing buffer |
Acqueous Mounting Medium | Thermo Scientific | TA-125-AM | mounting solution |
Acetone | SIGMA | 179124 | solvent |
Phosphomolybdic acid solution | SIGMA | HT153 | for hystology |
Direct Red 80 (Picrosirius Red) | SIGMA | 365548 | staining solution |
Bio Clear (clearing agent of terpene origin) | Bio-Optica | 06-1782D | product for the preparation of histological samples |
Eukitt Quick Hardening mounting medium (Poly(butyl methacrylate-co-methyl methacrylate) | SIGMA | 3989 | mounting solution |
Sodium Dodecyl Sulfate | Fluka | 71725 | powder |
Hydrogen Peroxide solution (30 %) | SIGMA | H1009 | solution |
Vectorstain ABC KIT including: anti-rabbit IgG ABC, normal rabbit serum, Secondary-biotinylated Anti-Rat IgG , | Vector Laboratories | PK-6100 | staining solution |
3-amino-9-ethylcarbazole | Vector Laboratories | SK-4200 | staining solution |
Mac3 antibody | BD Biosciences | 553322 | antibody |
ImagePro Premier 9 | Media Cybernetics | 050910000-2534 | software to analyze images |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved