JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Isolation of F1-ATPase from the Parasitic Protist Trypanosoma brucei

Published: January 22nd, 2019

DOI:

10.3791/58334

1Biology Centre, Czech Academy of Science, Institute of Parasitology, 2Faculty of Science, University of South Bohemia

F1-ATPase is a membrane-extrinsic catalytic subcomplex of F-type ATP synthase, an enzyme that uses the proton motive force across biological membranes to produce adenosine triphosphate (ATP). The isolation of the intact F1-ATPase from its native source is an essential prerequisite to characterize the enzyme's protein composition, kinetic parameters, and sensitivity to inhibitors. A highly pure and homogeneous F1-ATPase can be used for structural studies, which provide insight into molecular mechanisms of ATP synthesis and hydrolysis. This article describes a procedure for the purification of the F1-ATPase from Trypanosoma brucei, the causative agent of African trypanosomiases. The F1-ATPase is isolated from mitochondrial vesicles, which are obtained by hypotonic lysis from in vitro cultured trypanosomes. The vesicles are mechanically fragmented by sonication and the F1-ATPase is released from the inner mitochondrial membrane by the chloroform extraction. The enzymatic complex is further purified by consecutive anion exchange and size-exclusion chromatography. Sensitive mass spectrometry techniques showed that the purified complex is devoid of virtually any protein contaminants and, therefore, represents suitable material for structure determination by X-ray crystallography or cryo-electron microscopy. The isolated F1-ATPase exhibits ATP hydrolytic activity, which can be inhibited fully by sodium azide, a potent inhibitor of F-type ATP synthases. The purified complex remains stable and active for at least three days at room temperature. Precipitation by ammonium sulfate is used for long-term storage. Similar procedures have been used for the purification of F1-ATPases from mammalian and plant tissues, yeasts, or bacteria. Thus, the presented protocol can serve as a guideline for the F1-ATPase isolation from other organisms.

Tags

Keywords F1 ATPase

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved