A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol for the genetic incorporation of L-dihydroxyphenylalanine biosynthesized from simple starting materials and its application to protein conjugation.
L-dihydroxyphenylalanine (DOPA) is an amino acid found in the biosynthesis of catecholamines in animals and plants. Because of its particular biochemical properties, the amino acid has multiple uses in biochemical applications. This report describes a protocol for the genetic incorporation of biosynthesized DOPA and its application to protein conjugation. DOPA is biosynthesized by a tyrosine phenol-lyase (TPL) from catechol, pyruvate, and ammonia, and the amino acid is directly incorporated into proteins by the genetic incorporation method using an evolved aminoacyl-tRNA and aminoacyl-tRNA synthetase pair. This direct incorporation system efficiently incorporates DOPA with little incorporation of other natural amino acids and with better protein yield than the previous genetic incorporation system for DOPA. Protein conjugation with DOPA-containing proteins is efficient and site-specific and shows its usefulness for various applications. This protocol provides protein scientists with detailed procedures for the efficient biosynthesis of mutant proteins containing DOPA at desired sites and their conjugation for industrial and pharmaceutical applications.
DOPA is an amino acid involved in the biosynthesis of catecholamines in animals and plants. This amino acid is synthesized from Tyr by tyrosine hydroxylase and molecular oxygen (O2)1. Because DOPA is a precursor of dopamine and can permeate the blood-brain barrier, it has been used in the treatment of Parkinson's disease2. DOPA is also found in mussel adhesion proteins (MAPs), which are responsible for the adhesive properties of mussels in wet conditions3,4,5,6,
1. Plasmid Construction
The expression system for the direct incorporation of DOPA biosynthesized from a TPL is shown in Figure 1. The genes for the evolved aa-tRNA and aaRS pair are placed in a plasmid, and the GFP gene (GFP-E90TAG) containing an amber codon at position 90 is located in another plasmid to evaluate the incorporation of DOPA by GFP fluorescence. The TPL gene is placed in the same expression plasmid containing the GFP gene and constitutively expressed to maximize the .......
In this protocol, the biosynthesis and direct incorporation of DOPA are described. The bacterial cell used in this method can synthesize an additional amino acid and use it as an unnatural building block for protein synthesis. The genetic incorporation of unnatural amino acids has been a key technology for the development of unnatural organism with an expanded genetic code. However, this method has been technically incomplete and is being modified to improve incorporation efficiency and minimize perturbation to endogenou.......
This research was supported by the Global Frontier Research Program (NRF-2015M3A6A8065833), and the Basic Science Research Program (2018R1A6A1A03024940) through the National Research Foundation of Korea (NRF) funded by the Korea government.Â
....Name | Company | Catalog Number | Comments |
1. Plasmid Construction | |||
Plasmid pBAD-dual-TPL-GFP-E90TAG | optionally contain the amber stop codon(TAG) at a desired position. Ko, W. et al. Efficient and Site-Specific Antibody Labeling by Strain-promoted Azide-Alkyne Cycloaddition. BKCS. 36 (9), 2352-2354, doi: 10.1002/bkcs.10423, (2015) | ||
Plasmid pEvol-DHPRS2 | 1. Young, T. S., Ahmad, I., Yin, J. A., and Schultz, P. G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395 (2), 361-374, doi: 10.1016/j.jmb.2009.10.030, (2010) 2. Kim, S., Sung, B. H., Kim, S. C., Lee, H. S. Genetic incorporation of l-dihydroxyphenylalanine (DOPA) biosynthesized by a tyrosine phenol-lyase. Chem. Commun. 54 (24), 3002-3005, doi: 10.1039/c8cc00281a (2018). | ||
DH10β | Invitrogen | C6400-03 | Expression Host |
Plasmid Mini-prep kit | Nucleogen | 5112 | 200/pack |
Agarose | Intron biotechnology | 32034 | 500 g |
Ethidium bromide | Alfa Aesar | L07482 | 1 g |
LB Broth | BD Difco | 244620 | 500 g |
2. Culture preparation | |||
2.1) Electroporation | |||
Micro pulser | BIO-RAD | 165-2100 | |
Micro pulser cuvette | BIO-RAD | 165-2089 | 0.1 cm electrode gap, pkg. of 50 |
Ampicillin Sodium | Wako | 018-10372 | 25 g |
Chloramphenicol | Alfa Aesar | B20841 | 25 g |
Agar | SAMCHUN | 214230 | 500 g |
SOC medium | Sigma | S1797 | 100 mL |
3. Expression and Purification of GFP-E90DOPA by biosynthetic system | |||
3.1 Expression of GFP-E90DOPA by biosynthetic system | |||
L(+)-Arabinose, 99% | Acros | 104981000 | 100 g |
Pyrocatechol, 99% | SAMCHUN | P1387 | 25 g |
Ammonium sulfate, 99% | SAMCHUN | A0943 | 500 g |
pyruvic acid, 98% | Alfa Aesar | A13875 | 100 g |
Sodium phosphate dibasic, anhydrous, 99% | SAMCHUN | S0891 | 1 kg |
Potassium phophate, monobasic, 99% | SAMCHUN | P1127 | 1 kg |
Magnesium sulfate, anhydrous, 99% | SAMCHUN | M0146 | 1 kg |
D(+)-Glucose, anhydrous, 99% | SAMCHUN | D0092 | 500 g |
Glycerol, 99% | SAMCHUN | G0269 | 1 kg |
Trace metal mix a5 with co | Sigma | 92949 | 25 mL |
L-Proline, 99% | SAMCHUN | P1257 | 25 g |
L-Phenylalanine, 98.5% | SAMCHUN | P1982 | 25 g |
L-Tryptophane | JUNSEI | 49550-0310 | 25 g |
L-Arginine, 98% | SAMCHUN | A1149 | 25 g |
L-Glutamine, 98% | JUNSEI | 27340-0310 | 25 g |
L-Asparagine monohydrate, 99% | SAMCHUN | A1198 | 25 g |
L-Methionine | JUNSEI | 73190-0410 | 25 g |
L-Histidine hydrochloride monohydrate, 99% | SAMCHUN | H0604 | 25 g |
L-Threonine, 99% | SAMCHUN | T2938 | 25 g |
L-Leucine | JUNSEI | 87070-0310 | 25 g |
Glycine, 99% | SAMCHUN | G0286 | 25 g |
L-Glutamic acid, 99% | SAMCHUN | G0233 | 25 g |
L-Alanine, 99% | SAMCHUN | A1543 | 25 g |
L-Isoleucine, 99% | SAMCHUN | I1049 | 25 g |
L-Valine, 99% | SAMCHUN | V0088 | 25 g |
L-Serine | SAMCHUN | S2447 | 25 g |
L-Aspartic acid | SAMCHUN | A1205 | 25 g |
L-Lysine monohydrochloride, 99% | SAMCHUN | L0592 | 25 g |
3.2 Cell lysis | |||
Imidazole, 99% | SAMCHUN | I0578 | 1kg |
Sodium phosphate monobasic, 98% | SAMCHUN | S0919 | 1 kg |
Sodium Chloride, 99% | SAMCHUN | S2907 | 1 kg |
Ultrasonic Processor - 150 microliters to 150 milliliters | SONIC & MATERIALS | VCX130 | |
3.3 Ni-NTA Affinity Chromatography | |||
Ni-NTA resin | QIAGEN | 30210 | 25 mL |
Polypropylene column | QIAGEN | 34924 | 50/pack, 1 mL capacity |
4. Oligomerization of Purified GFP-E90DOPAÂ | |||
Sodium periodate, 99.8& | Acros | 419610050 | 5 g |
5. Conjugation of GFP-E90DOPA with an Alkyne Probe by Strain-Promoted Oxidation-Controlled Cyclooctyne–1,2-Quinone Cycloaddition (SPOCQ) | |||
Cy5.5-ADIBOÂ | FutureChem | FC-6119 | 1mg |
6. Purification of Labeled GFP | |||
Amicon Ultra 0.5 mL Centrifugal Filters | MILLIPORE | UFC500396 | 96/pack, 500ul capacity |
7. SDS-PAGE Analysis and Fluorescence Gel Scanning | |||
1,4-Dithio-DL-threitol, DTT, 99.5 % | Sigma | 10708984001 | 10 g |
NuPAGE LDS Sample Buffer, 4X | Thermofisher | NP0007 | 10 mL |
MES running buffer | Thermofisher | NP0002 | 500 mL |
Nupage Novex 4-12% SDS PAGE gels | Thermofisher | NO0321 | 12 well |
Coomassie Brilliant Blue R-250 | Wako | 031-17922 | 25 g |
G:BOX Chemi Fluorescent & Chemiluminescent Imaging System | Syngene | G BOX Chemi XT4 | |
8. MALDI-TOF MS analysis by Trypsin Digestion | |||
8.1 Preparation of the digested peptide sample by trypsin digestion | |||
Tris(hydroxymethyl)aminomethane, 99% | SAMCHUN | T1351 | 500 g |
Hydrochloric acid, 35~37% | SAMCHUN | H0256 | 500 mL |
Dodecyl sulfate sodium salt, 85% | SAMCHUN | D1070 | 250 g |
Iodoacetamide | Sigma | I6125 | 5 g |
Trypsin Protease, MS Grade | Thermofisher | 90057 | 5 x 20 µg/pack |
C-18 spin columns | Thermofisher | 89870 | 25/pack, 200 µL capacity |
8.2 Analysis of the digested peptide by MALDI-TOF | |||
Acetonitirile, 99.5% | SAMCHUN | A0125 | 500 mL |
α-Cyano-4-hydroxycinnamic acid | Sigma | C2020 | 10 g |
Trifluoroacetic acid, 99% | SAMCHUN | T1666 | 100 g |
MTP 384 target plate ground steel BC targets | Bruker | 8280784 | |
Bruker Autoflex Speed MALDI-TOF mass spectrometer | Bruker |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved