JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Erratum Notice
  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Erratum
  • Reprints and Permissions

Erratum Notice

Important: There has been an erratum issued for this article. Read More ...

Summary

Here, we present a protocol to rapidly isolate high-quality nuclei from the fresh or frozen tissue for downstream massively parallel RNA sequencing. We include detergent-mechanical and hypotonic-mechanical tissue disruption and cell lysis options, both of which can be used for isolation of nuclei.

Abstract

Probing an individual cell's gene expression enables the identification of cell type and cell state. Single-cell RNA sequencing has emerged as a powerful tool for studying transcriptional profiles of cells, particularly in heterogeneous tissues such as the central nervous system. However, dissociation methods required for single cell sequencing can lead to experimental changes in the gene expression and cell death. Furthermore, these methods are generally restricted to fresh tissue, thus limiting studies on archival and bio-bank material. Single nucleus RNA sequencing (snRNA-Seq) is an appealing alternative for transcriptional studies, given that it accurately identifies cell types, permits the study of tissue that is frozen or difficult to dissociate, and reduces dissociation-induced transcription. Here, we present a high-throughput protocol for rapid isolation of nuclei for downstream snRNA-Seq. This method enables isolation of nuclei from fresh or frozen spinal cord samples and can be combined with two massively parallel droplet encapsulation platforms.

Introduction

The nervous system is comprised of heterogenous groups of cells that display a diverse array of morphological, biochemical, and electrophysiological properties. While the bulk RNA sequencing has been useful for determining tissue-wide changes in the gene expression under different conditions, it precludes the detection of transcriptional changes at the single-cell level. Recent advances in the single-cell transcriptional analysis have enabled the classification of heterogenous cells into functional groups based on their molecular repertoire and can even be leveraged to detect sets of neurons that had been recently active.1,2,3,4 Over the last ten years, the development of single cell RNA sequencing (scRNA-Seq) has enabled the study of gene expression in individual cells, providing a view into cell-type diversity.5

The emergence of scalable approaches such as massively parallel scRNA-Seq, has provided platforms to sequence heterogeneous tissues, including many regions of the central nervous system.6,7,8,9,10,11,12,13,14,15 However, single cell dissociation methods can lead to the cell death as well as experimental changes in gene expression.16 Recent work has adapted single cell sequencing methods to enable preservation of endogenous transcriptional profiles.1,3,4,17,18,19 These strategies have been particularly suitable for detecting immediate early gene (IEG) expression following sensory stimulus or behavior.3,4 In the future, this strategy could also be used to study dynamic changes in tissues in disease states or in response to stress. Of these methods, single nucleus RNA sequencing (snRNA-Seq) is a promising approach that does not involve stress-inducing cell dissociation and can be used on difficult to dissociate tissue (such as the spinal cord), as well as frozen tissue.4,17,18,19 Adapted from previous nuclei isolation methods,20,21,22,23,25 snRNA-Seq typically utilizes rapid tissue disruption and cell lysis under cold conditions, centrifugation, and separation of nuclei from cellular debris.4 Nuclei can be isolated for the downstream next-generation sequencing on multiple microfluidic droplet encapsulation platforms.4,7,24,25 This method allows for a snapshot of the transcriptional activity of thousands of cells at a moment in time.

There are multiple strategies for releasing nuclei from cells before isolation and sequencing, each with their own advantages and disadvantages. Here, we describe and compare two protocols to enable isolation of nuclei from the adult spinal cord for the downstream massively parallel snRNA-Seq: detergent-mechanical lysis and hypotonic-mechanical lysis. Detergent-mechanical lysis provides complete tissue disruption and a higher final yield of nuclei. Hypotonic mechanical-lysis includes a controllable degree of tissue disruption, providing an opportunity for selecting a balance between the quantity and purity of the final nuclear yield. These approaches provide comparable RNA yield, detected numbers of genes per nucleus, and cell-type profiling and also can both be used successfully for snRNA-Seq.

Protocol

All animal work was performed in accordance with a protocol approved by the National Institute of Neurological Disorders and Stroke Animal Care and Use Committee. Balanced samples of male and female ICR/CD-1 wild-type mice, between 8 and 12 weeks old, were used for all experiments. Mice should be handled in accordance with local Institutional Animal Care and Use Committee guidelines.

1. Preparation of Materials and Buffers

  1. Prepare all buffers the day of use and pre-chill on ice (see Table 1).
    1. If using detergent-mechanical lysis, prepare the detergent lysis buffer (> 500 μL per sample), low sucrose buffer (> 6 mL per sample), sucrose density buffer (> 12.5 mL per sample), and the resuspension solution (> 1 mL).
    2. If using hypotonic-mechanical lysis, prepare the hypotonic lysis buffer (> 5 mL per sample), HEB medium (> 5 mL per sample), low sucrose buffer (> 3 mL per sample), sucrose density buffer (>12.5 mL per sample), and the resuspension solution (> 1 mL).
    3. Add 25 μL of dithiothreitol (DTT) to 25 mL of the low sucrose buffer and another 25 μL of DTT to 25 mL of the sucrose density gradient buffer just before starting the protocol.
  2. Cover the dissecting surface with aluminum-foil to minimize contamination of the sample with fibers from paper towels or bench protectors, which can clog microfluidic channels used for capturing single nuclei.
  3. Spray dissecting tools and bench space with an RNase decontamination solution. Additionally, spray the inside of the Dounce homogenizer tube (if using detergent-mechanical cell lysis) and Oak Ridge tube with an RNase decontamination solution. Rinse out the Dounce and Oak Ridge tube with ultrapure, RNase-free water.
  4. Pre-chill all collection tubes (50 mL conical, Oak Ridge) and Dounce homogenizer tubes on ice.
  5. Fire polish a series of Pasteur pipettes (if using hypotonic-mechanical cell lysis).

2. Preparation of the Spinal Cord

  1. If using fresh tissue, euthanize the mouse by CO2 inhalation. Following euthanasia, spray the coat of the mouse with 70% ethanol to minimize hair contamination in the sample.
  2. Decapitate the mouse with sharp, RNase-free surgical scissors. Next, gently lifting the abdominal skin with forceps and make an incision along the length of the body to expose the inner organs.
  3. Eviscerate the mouse by pulling the inner organs from the body cavity using forceps. Do not use paper towels to clean the area or to remove organs as this may introduce contaminants. Using scissors, cut the vertebral column between the L2 and L3 spinal vertebrae.
    NOTE: With practice, this step can be achieved in less than 30 seconds.
    1. To eject the spinal cord, fit a 3 mL syringe containing ice-cold PBS with a 25 G ¼ inch needle. Place the tip of the needle into the sacral end of the vertebral column. Use two fingers to pinch the vertebrae to create a tight seal around the tip of the needle and press down on the plunger to eject the spinal cord rostrally. Place the spinal cord in a petri dish with ice-cold PBS.
    2. At this point, freeze the tissue and store at -80 °C or use immediately for either detergent-mechanical (Step 3) or hypotonic-mechanical (Step 4) lysis.
  4. If using frozen tissue, maintain the tissue on dry ice, proceed to detergent-mechanical (Step 3) or hypotonic-mechanical (Step 4) lysis.

3. Detergent-Mechanical Cell Lysis

  1. Place the lumbar spinal cord in a pre-chilled Dounce homogenizer and add 500 μL pre-chilled detergent lysis buffer.
    NOTE: A mouse lumbar spinal cord is 325.5 mg ± 63.9 mg standard error of the mean (SEM, N = 4). 50 mg–1.5 g of tissue can be successfully used.
  2. Dounce with 5 strokes of pestle A (‘loose’ pestle), then 5-10 strokes of pestle B (‘tight’ pestle). Avoid lifting the homogenizer out of the lysis solution in between strokes and avoid introducing bubbles.
  3. Place a 40 μm strainer over a pre-chilled 50 mL conical tube and prewet with 1 mL of low sucrose buffer.
  4. Add 1 mL of low sucrose buffer to the Dounce homogenizer containing the crude nuclei in the lysis buffer and mix gently by pipetting 2–3 times.
  5. Pass the crude nuclei prep over the 40 μm strainer into the pre-chilled 50 mL conical tube.
  6. Pass an additional 1 mL low sucrose buffer over the 40 μm strainer, bringing the final volume to 3 mL of the low sucrose buffer and 500 μL of the lysis buffer.
  7. Repeat steps 3.1–3.6 if combining multiple cords, pooling in the same conical tube.
  8. Centrifuge the sample at 3,200 x g for 10 min at 4 °C. Once the centrifugation is complete, decant the supernatant. Proceed to Step 5.

4. Hypotonic-mechanical Cell Lysis

  1. Place the lumbar spinal cord in 5 mL of the hypotonic lysis buffer in a tissue culture dish. Use the blunt end of spring scissors to bisect the spinal cord, then use spring scissors to cut the cord into 3–4 mm pieces, but do not mince.
    Note: 50 mg–1.5 g of tissue can be successfully used.
  2. Incubate on the ice for 15 min, swirling 2–3 times.
  3. Add 5 mL of HEB medium to dilute the hypotonic lysis buffer.
  4. Triturate the tissue 10 times with a 5 mL serological pipette, or until all of the pieces of the tissue move smoothly through the opening of the pipette.
  5. Triturate with a series of three fire-polished Pasteur pipettes with progressively narrower diameters (~900–600 μm).
    1. For each pipette, triturate 5-15 times, allow tissue to settle, remove 1–2 mL of supernatant containing dissociated nuclei and pass over a 40 μm strainer into a pre-chilled 50 mL conical tube.
    2. After trituration with the smallest-sized Pasteur pipette, ensure that the homogenate flows smoothly through the pipette tip. Pass the remaining solution over the 40 μm strainer into the 50 mL conical tube.
      NOTE: The total number of triturations can be adjusted as desired. The meninges of the mouse spinal cord will remain, but it is important to triturate any visible chunks of spinal cord. Pass the remaining homogenate over the 40 μm strainer. Avoid introducing bubbles during trituration.
  6. Centrifuge the filtered sample at 1,000 x g for 10 min at 4 °C. Once the centrifugation is complete, decant and discard the supernatant. Proceed to Step 5.

5. Homogenization and Sucrose Density Gradient

  1. After either Step 3 or 4, resuspend the pellet using 3 mL of low sucrose buffer. Gently swirl to remove the pellet from the wall to facilitate the resuspension. Let the sample sit on ice for 2 min and transfer the suspension to an Oak Ridge tube.
  2. Using the homogenizer at setting 1, homogenize the nuclei in low sucrose buffer for 15–30 s, keeping the sample on ice.
    NOTE: Use 15 s if using one lumbar spinal cord or 30 s if using pooled samples or a whole spinal cord.
  3. Using a serological pipette, layer 12.5 mL of density sucrose buffer underneath the low sucrose buffer homogenate, taking care not to create a bubble that disrupts the density layers.
  4. Centrifuge the tubes at 3,200 x g for 20 min at 4 °C.
  5. Once the centrifugation is complete, immediately decant the supernatant in a flicking motion.
    NOTE: A residual volume (less than 400 μL) of sucrose buffer can be discarded if desired to produce a lower volume and cleaner final sample, but this residual volume does contain nuclei and can be preserved to maximize nuclei yield.
  6. Using 100 μL - 1 mL of resuspension solution, resuspend the nuclei remaining on the wall. Avoid the myelin ‘frown’ that remains with the detergent-based preparation.
  7. Filter the nuclei through a 30–35 μm pore-size strainer and collect in a pre-chilled tube.
  8. Determine the nuclei yield using a hemocytometer to count nuclei under a 10X objective.
    NOTE: Trypan blue can be added to visualize nuclei, which should appear blue. Note the amount of cellular debris.
  9. Proceed to either Step 6 or 7.

6. Massively Parallel snRNA-Sequencing: Academic Platform7

  1. Perform the massively parallel snRNA sequencing (e.g., Drop-Seq) method as previously described7 with the following modifications:4
    1. Adjust nuclei to a final concentration of 225 nuclei per μL.
    2. Prepare barcoded beads at a concentration of 250 beads per μL.
    3. Prepare the lysis buffer with 0.7% sarkosyl.
    4. Adjust the flow rates to 35 μL per min for beads, 35 μL per min for nuclei, and 200 μL per min for oil.

7. Massively parallel snRNA-sequencing: Commercial Platform26

  1. Perform massively parallel snRNA-sequencing using the commercial platform (e.g., Chromium Single Cell Gene Expression Solution) products according to the manufacturer’s instructions26 with the following modification:
    1. Following reverse-transcription, add an additional PCR cycle to the calculated number of cycles for cDNA amplification based on the targeted cell recovery to compensate for decreased cDNA from nuclei compared to cells.

Results

Here, we performed isolation of nuclei from the adult mouse lumbar spinal cord for downstream massively parallel RNA sequencing. The protocol involved three main components: tissue disruption and cellular lysis, homogenization, and sucrose density centrifugation (Figure 1). Within seconds, the detergent-mechanical lysis yielded a crude nuclei preparation with a large number of nuclei as well as cellular and tissue debris (Figure 2A

Discussion

The ultimate goal of this protocol is to isolate nuclei containing high-quality RNA for downstream transcriptional analysis. We adapted snRNA-Seq methods in order to profile all of the cell types in the spinal cord. Initially, we found that typical cell dissociation methods were ineffective for single cell RNA sequencing, as spinal cord neurons are particularly vulnerable to cell death. Furthermore, cell dissociation methods induce expression of various activity- and stress-response genes by up to several hundred-fold.

Disclosures

We have no conflicts of interest to disclose.

Acknowledgements

This work was supported by the intramural program of NINDS (1 ZIA NS003153 02) and NIDCD (1 ZIA DC000059 18). We thank L. Li and C.I. Dobrott for their technical support and helpful discussions, and C. Kathe for reviewing the manuscript.

Materials

NameCompanyCatalog NumberComments
SucroseInvitrogen15503-022
1 M HEPES (pH = 8.0)Gibco15630-080
CaCl2Sigma AldrichC1016-100G
MgAcSigma AldrichM5661-50G
0.5 M EDTA (pH = 8.0)CorningMT-46034CI
Dithiothreitol (DTT)Sigma Aldrich10197777001Add DTT just prior to use
Triton-XSigma AldrichT8787
Nuclease-free waterCrystalgen221-238-10
1 M Tris-HCl (pH = 7.4)Sigma AldrichT2194
5 M NaClSigma Aldrich59222C
1 M MgCl2Sigma AldrichM1028
Nonidet P40Sigma Aldrich74385
Hibernate-AGibcoA12475-01
Glutamax (100x)Gibco35050-061
B27 (50x)Gibco17504-044
1x PBSCrystalgen221-133-10
0.04% BSANew England BiolabsB9000S
0.2 U/μL RNAse InhibitorLucigen30281-1
Oak Ridge Centrifuge TubeThermo Scientific3118-0050
Disposable Cotton-Plugged Borosilicate-Glass Pasteur PipetsFisher Scientific13-678-8B
Glass Tissue Dounce (2 mL)Kimble885303-002
Glass large clearance pestleKimble885301-0002
Glass small clearance pestleKimble885302-002
T 10 Basic Ultra Turrax HomogenizerIKA3737001
Dispersing tool (S 10 N – 5G)IKA3304000
Trypan Blue Stain (0.4%)Thermo Fisher ScientificT10282
40 μm cell strainerFalcon352340
MACS SmartStrainers, 30 μmMiltenyi Biotec130-098-458
Conical tubesDenville Scientific1000799
Sorvall Legend XTR CentrifugeThermo Fisher Scientific75004505
Fiberlite F15-6 x 100y Fixed-Angle RotorThermo Fisher Scientific75003698
Sterological Pipettes: 5 mL, 10 mLDenville ScientificP7127
HemocytometerDaigger ScientificEF16034F
Chemgenes Barcoding BeadsChemgenesMacosko-2011-10
RNaseZap RNase Decontamination SolutionInvitrogenAM9780
Falcon Test Tube with Cell Strainer Cap (35 μm)Corning352235
MoFlo Astrios Cell SorterBeckman CoulterB25982
Chromium i7 Multiplex Kit, 96 rxns10X Genomics120262
Chromium Single Cell 3’ Library and Gel Bead Kit v2, 4 rxns10X Genomics120267
Chromium Single Cell A Chip Kit, 16 rxns10X Genomics
Tissue Culture Dish (60 mm x 15 mm)Corning353002

References

  1. Hrvatin, S., et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nature Neuroscience. 21 (1), 120-129 (2018).
  2. Hu, P., et al. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq. Molecular Cell. 68 (5), 1006-1015 (2017).
  3. Wu, Y. E., Pan, L., Zuo, Y., Li, X., Hong, W. Detecting Activated Cell Populations Using Single-Cell RNA-Seq. Neuron. 96 (2), 313-329 (2017).
  4. Sathyamurthy, A., et al. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Reports. 22 (8), 2216-2225 (2018).
  5. Tang, F., et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods. 6 (5), 377-382 (2009).
  6. Campbell, J. N., et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience. 20 (3), 484-496 (2017).
  7. Macosko, E. Z., et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 161 (5), 1202-1214 (2015).
  8. Chen, R., Wu, X., Jiang, L., Zhang, Y. Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. Cell Reports. 18 (13), 3227-3241 (2017).
  9. Jaitin, D. A., et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 343 (6172), 776-779 (2014).
  10. Li, C. L., et al. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Research. 26 (8), 967 (2016).
  11. Shin, J., et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell. 17 (3), 360-372 (2015).
  12. Tasic, B., et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience. 19 (2), 335-346 (2016).
  13. Usoskin, D., et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience. 18 (1), 145-153 (2015).
  14. Villani, A. C., et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 356 (6335), (2017).
  15. Zeisel, A., et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 347 (6226), 1138-1142 (2015).
  16. Lacar, B., et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nature Communications. 7, 11022 (2016).
  17. Lake, B. B., et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 352 (6293), 1586-1590 (2016).
  18. Grindberg, R. V., et al. RNA-sequencing from single nuclei. Proceedings of the National Academy of Sciences of the United States of America. 110 (49), 19802-19807 (2013).
  19. Krishnaswami, S. R., et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nature Protocols. 11 (3), 499-524 (2016).
  20. Matevossian, A., Akbarian, S. Neuronal nuclei isolation from human postmortem brain tissue. Journal of Visualized Experiments. (20), (2008).
  21. Bergmann, O., Jovinge, S. Isolation of cardiomyocyte nuclei from post-mortem tissue. Journal of Visualized Experiments. (65), (2012).
  22. Nohara, K., Chen, Z., Yoo, S. H. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation. Journal of Visualized Experiments. (125), (2017).
  23. Halder, R., et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nature Neuroscience. 19 (1), 102-110 (2016).
  24. Habib, N., et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nature Methods. 14 (10), 955-958 (2017).
  25. . Sample Preparation Demonstrated Protocols: Isolation of Nuclei for Single Cell RNA Sequencing Available from: https://support.10xgenomics.com/single-cell-gene-expression/sample-prep/doc/demonstrated-protocol-isolation-of-nuclei-for-single-cell-rna-sequencing (2018)
  26. 10X Genomics. . Single Cell 3' Reagent Kits v2 User Guide. , (2018).
  27. Fu, Y., Rusznak, Z., Herculano-Houzel, S., Watson, C., Paxinos, G. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord. Brain Structure and Function. 218 (5), 1337-1354 (2013).
  28. Lake, B. B., et al. A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Scientific Reports. 7 (1), 6031 (2017).
  29. Bakken, T. E. Equivalent high-resolution identification of neuronal cell types with single-nucleus and single-cell RNA-sequencing. bioRxiv. , (2018).
  30. Habib, N., et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science. 353 (6302), 925-928 (2016).

Erratum


Formal Correction: Erratum: Isolation of Adult Spinal Cord Nuclei for Massively Parallel Single-nucleus RNA Sequencing
Posted by JoVE Editors on 11/20/2018. Citeable Link.

An erratum was issued for: Isolation of Adult Spinal Cord Nuclei for Massively Parallel Single-nucleus RNA Sequencing. The Protocol section was updated.

Step 3.1 was updated from:

Place the lumbar spinal cord in a pre-chilled Dounce homogenizer and add 500 mL pre-chilled detergent lysis buffer.

to:

Place the lumbar spinal cord in a pre-chilled Dounce homogenizer and add 500 μL pre-chilled detergent lysis buffer.

Step 3.6 was updated from:

Pass an additional 1 mL low sucrose buffer over the 40 mm strainer, bringing the final volume to 3 mL of the low sucrose buffer and 500 mL of the lysis buffer.

to:

Pass an additional 1 mL low sucrose buffer over the 40 mm strainer, bringing the final volume to 3 mL of the low sucrose buffer and 500 μL of the lysis buffer.

Step 5.5 was updated from:

Once the centrifugation is complete, immediately decant the supernatant in a flicking motion.
NOTE: A residual volume (less than 400 mL) of sucrose buffer can be discarded if desired to produce a lower volume and cleaner final sample, but this residual volume does contain nuclei and can be preserved to maximize nuclei yield

to:

Once the centrifugation is complete, immediately decant the supernatant in a flicking motion.
NOTE: A residual volume (less than 400 μL) of sucrose buffer can be discarded if desired to produce a lower volume and cleaner final sample, but this residual volume does contain nuclei and can be preserved to maximize nuclei yield

Step 5.6 was updated from:

Using 100 mL - 1 mL of resuspension solution, resuspend the nuclei remaining on the wall. Avoid the myelin ‘frown’ that remains with the detergent-based preparation.

to:

Using 100 μL - 1 mL of resuspension solution, resuspend the nuclei remaining on the wall. Avoid the myelin ‘frown’ that remains with the detergent-based preparation.

Steps 6.1.1 - 6.1.4 were updated from:

  1. Adjust nuclei to a final concentration of 225 nuclei per mL.
  2. Prepare barcoded beads at a concentration of 250 beads per mL.
  3. Prepare the lysis buffer with 0.7% sarkosyl.
  4. Adjust the flow rates to 35 mL per min for beads, 35 mL per min for nuclei, and 200 mL per min for oil.

to:

  1. Adjust nuclei to a final concentration of 225 nuclei per μL.
  2. Prepare barcoded beads at a concentration of 250 beads per μL.
  3. Prepare the lysis buffer with 0.7% sarkosyl.
  4. Adjust the flow rates to 35 μL per min for beads, 35 μL per min for nuclei, and 200 μL per min for oil.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Single nucleus RNA SequencingSpinal Cord Nuclei IsolationCell LysisDounce Homogenizer40 micron StrainerLow Sucrose BufferCentral Nervous SystemTissue DissociationFrozen TissueCell Type specific ChangesDisease Or Injury

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved