JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

In this study, we modify an existing experimental method to obtain more reproducible results, by establishing a middle cerebral artery occlusion (MCAO) mouse model. Oral administration of Glycyrrhizae Radix et Rhizome (GR) methanol extract (GRex), following stroke induction, significantly decreased total infarction volume relative to the untreated control group.

Abstract

Ischemia followed by reperfusion of cerebral blood flow after a stroke leads to the death of nerve cells and loss of brain tissue. The most commonly used animal model for studying stroke is the middle cerebral artery occlusion (MCAO) model. Previous research studies have reported different infarct sizes even when the same experimental animal species was used under similar MCAO conditions. Therefore, we developed an improved experimental method to address this discrepancy. Mice were subjected to MCAO using a filament as the occlusion material to mimic human stroke conditions and filament thickness was optimized to establish more reproducible infarction volume. Mice treated with a methanol extract of Glycyrrhizae Radix et Rhizome (GRex) following stroke induction showed a significantly decreased total infarction volume and increased number of surviving cells relative to the untreated control group. This modified experimental protocol successfully and reproducibly demonstrated the beneficial effect of GRex on ischemic stroke.

Introduction

Brain damage caused by ischemia and reperfusion of cerebral blood flow leads to the death of nerve cells and loss of brain tissue. This type of brain damage continues to increase with the increasing prevalence of cerebrovascular diseases due to the spread of metabolic diseases such as obesity, hypertension, and diabetes mellitus1,2. The absolute number of elderly patients with stroke has dramatically increased worldwide, and the cost of medical care for these patients, who are often left with long-term disabilities, is a major societal burden. Therefore, secondary disabilities should be mitigated as much as possible to reduce the economic burden1,2.

The most commonly used rodent model of cerebral infarction is the middle cerebral artery (MCA) occlusion (MCAO) model, in which the MCA is occluded with a silicon-coated surgical suturing filament to block blood flow, causing ischemic stroke3,4. Using a filament as the occlusion material allows the control of occlusion time and permanence by manipulating the duration of the intra-luminal filament insertion.

Previous studies have shown that even when the same rodent MCAO model is used, the total volume of cerebral infarction varies between experiments, causing low reproducibility of the studies. To improve reproducibility, we optimized the thickness of the filament mint used in the experiment. The results of a preliminary study of the cerebral ischemic period and induced infarction showed that an ischemic period longer than 60 min allowed the volumetric region of damaged brain tissue to be observed and quantified.

Glycyrrhizae Radix et Rhizoma (GR), also known as licorice, consists of the dried roots and rhizomes of Glycyrrhiza uralensis and G. glabra. It has been used in Chinese and Korean traditional medicine for various purposes including as a food additive and medicinally5,6,7.

In a previous study8, pre-treatment with GR methanol extract (GRex) showed an anti-apoptotic effect in MCAO mice, including significant prevention of the decrease in the protein expression of B-cell lymphoma 2 (Bcl-2) and Bcl extra-large (Bcl-xL). This study was conducted to improve the reproducibility of the conventional MCAO mouse model by evaluating its efficiency in determining if post-infarct treatment with GRex effectively reduced the infarct volume in MCAO-induced cerebral damage.

Protocol

All procedures involving animals were approved by the ethics committee of Pusan National University (approval number, PNU-2016-1087). A graphical overview of this study is shown in Figure 1.

1. Preparation and Administration of GRex

NOTE: The GR used in this study was purchased from a commercial pharmaceutical company.

  1. Place 200 g of GR in 2,000 mL of methanol and incubate at room temperature (25 °C) for 5 days.
  2. Filter the mixture using filter paper with 0.26 mm thickness and 5 µm pore size, and then remove the supernatant. Add 1,000 mL of methanol to the GR residue and filter again.
  3. Combine the two supernatants, filter through filter paper, concentrate under vacuum, and then freeze-dry the residue to produce GRex.
  4. Dissolve the GRex in dimethyl sulfoxide (DMSO), dilute with 0.9% physiological saline, and filter through a 0.45 µm syringe filter. Then, adjust the final concentration of DMSO to < 5%.
  5. Administer GRex (300 mg/kg body weight) 1 h after the reperfusion of MCAO via oral gavage. Administer DMSO diluted in physiological saline (10 mL/kg body weight) only to the normal group and control groups, respectively.
    NOTE: The concentration of GRex used in this experiment was determined according to the concentration that was active through our previous study8.

2. Mouse Model of MCAO

  1. Use male C57BL/6 mice aged 6 weeks and weighing 22-25 g. Provide all animals with free access to standard chow and water, and house them in an environment with controlled temperature (22 ± 1 °C) and a 12 h light/dark cycle.
    1. Divide the mice into groups of six mice each, which should consist of sham-operated normal, control, and GRex treatment groups.
    2. Perform MCAO surgery (modification of the method of Koizumi et al.9) on the control and GRex treatment groups using a stereo-microscope.
  2. Induce inhalation anesthesia in the mice using 2% isoflurane in 70% N2O and 30% O2. Anesthesia is considered sufficient when the mouse becomes unresponsive to mechanical stimulus applied to its tail. Maintain the body temperature of the mice at 36.5 ± 0.5 °C using a body temperature-holding blanket connected to a thermometer.
  3. Remove all the hair on the chests and necks of the mice by shaving followed by use of hair removal cream, disinfect the surgical site of skin with betadine scrub alternating with alcohol for two times, and then make an incision of approximately 2 cm long with surgical blade in the center of the neck. Carefully isolate the left common carotid artery (LCCA), external carotid artery, and the branch of the internal carotid artery from surrounding connective tissues.
  4. Ligate the external carotid artery and the common carotid artery with a surgical suture (4-0 silk suture, half hitch knot) to temporarily block the blood flow into the internal carotid artery during the operation.
  5. Insert a silicon-coated nylon suture (8-0 monofilament, 11 mm long) through the internal carotid artery to the origin of the left MCA. Adjust the thickness of the silicon-coated part of the filament to a range of 0.10-0.12 mm.
  6. Measure the decrease in relative cerebral blood flow (rCBF) in the MCA using a laser Doppler flowmeter. MCAO will be confirmed when the rCBF is maintained at < 20% of the resting condition values during the entire ischemic period.
  7. Fix the inserted filament to the blood vessel for 2 h while the cerebral artery is occluded, and then carefully withdraw the filament to restore the blood flow for 22 h of reperfusion. Suture the skin by sewing at 5 places (3-0 silk suture, two half hitches knot) and allow each mouse to awaken from the anesthesia.
  8. In the normal group, perform a sham operation following the same procedure above (until 2.4), with the following exception. Ligate the common carotid artery and suture the incised muscle and skin.

3. Measurement of Volume of Damaged Brain Tissue

  1. After euthanasia of the mice for brain damage measurement with CO2 inhalation, excise the mouse brains 24 h after the onset of MCAO using iris surgical scissors and angled forceps.
    1. After removing the head using scissors, make an incision in the midline skin of the head to flip over the skin from the skull.
    2. Break the parietal bones with angled forceps, peeling off dura matter at the same time, and then isolate the brain carefully from the skull.
  2. Cut the excised tissue into sections (1 mm thick) using a mouse brain matrix, and then stain the sections for 17 min in a solution of 2% 2,3,5-triphenyltetrazolium chloride (TTC).
  3. Fix the sections in 10% formalin for at least 2 h and then photograph them using a digital camera. TTC will be observed to stain viable tissue red while the necrotic areas will be white.
  4. Analyze and quantify the cerebral infarct area of each section using ImageJ.

4. Hematoxylin and Eosin (H&E) and Cresyl Violet Staining of Histological Sections

  1. Euthanize the mice for histological study by CO2 inhalation and perfuse them transcardially with 10 mL of phosphate-buffered saline (PBS), followed by 10 mL of 4% paraformaldehyde (PFA). Isolate the brain using the same procedure as above (3.1) and immerse the brain in 10 mL of 30% sucrose overnight.
  2. Embed the brain tissue in optimal cutting temperature (OCT) compound and slice it coronally into 15-µm-thick sections using a cryostat. Mount the sections on glass slides, followed by staining with hematoxylin and eosin (H&E) or cresyl violet.
  3. Immerse the glass slides in 80% ethanol for 1 min followed by staining in hematoxylin solution for 5 min.
    1. Dip the slides in 1% acid alcohol twice, immerse in saturated lithium carbonate solution for 30 s, wash with tap water for 30 s, and then counterstain in eosin solution for 30 s.
    2. Rinse the slides in tap water, soak in 95% and absolute ethanol consecutively.
    3. Air-dry the slides, clear them in xylene for at least 10 min, and then mount the coverslips using mounting medium.
  4. Place the glass slides on a slide warmer for at least 1 h, followed by immersion in 50% ethanol diluted with chloroform overnight.
    1. Stain the slides with 0.1% cresyl violet for 10 min in a 40 °C dry oven.
    2. Immerse in 95% ethanol for 30 min, then dehydrate in absolute ethanol for 2 times.
    3. Clear 2 times in xylene for 5 min, then mount with mounting medium after air drying.
  5. Using a microscope, observe the histological changes that occurred after MCAO-induced brain injury.

5. Statistical Analysis

  1. Express the experimental results as means ± standard deviation and determine the statistical significance between the groups using a one-way analysis of variance (ANOVA) followed by Tukey's post hoc analysis using a data analysis software.
  2. Set the statistical significance at a p-value < 0.05.

Results

In the sham-operated normal group, no cerebral infarct is observed whereas in the control group, a relatively wide range of damaged areas is observed. In the mice administered 300 mg/kg GRex in the MCAO model group, a statistically significant reduction in damaged area is observed (Figure 2).

The histological changes are investigated by staining ischemic brain sections with H&E or cresyl violet....

Discussion

With the increasing prevalence of metabolic diseases such as chronic hypertension, diabetes, and hyperlipidemia, which are major risk factors for stroke, stroke prevention and treatment have become an important area of medical research12,13. Deficits in language and movement after a stroke are strongly correlated with the degree of damage to brain tissue14 and result in a poor quality of life for patients and their families

Disclosures

The authors have nothing to disclose.

Acknowledgements

Not applicable.

Materials

NameCompanyCatalog NumberComments
Glycyrrhizae Radix et RhizomaGwangmyoung Pharmaceuticals Co., KoreaGlycyrrhizae Radix et Rhizoma
Qualitative filter paperAdvantecFilter paper No. 2Qualitative filter paper
Dimethyl sulfoxide (DMSO)SigmaD8418-250MLDimethyl sulfoxide (DMSO)
Syringe filter (0.45 µm)SigmaCLS431220Syringe filter (0.45 µm)
Stereo MicroscopeLeicaM50Stereo Microscope
Stereo MicroscopeNikonSMZ745Stereo Microscope
Laser DopplerMoor InstrumentmoorVMS-LDFLaser Doppler
Anesthesia Tabletop Bracket with N2O&O2 Flowmeter SystemHarvard Appratus34-1352Anesthesia Tabletop Bracket with N2O&O2 Flowmeter System
Homeothermic Monitoring SystemHarvard Appratus55-7020Homeothermic Monitoring System
Digital CameraCanonEos-M2Digital Camera
CryostatLeicaCM3050SCryostat
MicroscopeCarl ZeissZeiss AxioMicroscope
Data AnalysisSystat Software Inc.SigmaPlot version 12Data Analysis
Data AnalysisNIH ImageImageJData Analysis
Mouse dietDoo Yeol BiotechStandard rodent chowMouse diet
IsofluraneJOONGWAEA02104781Isoflurane
IsofluraneTROIKAAISOTROY 100Isoflurane
Silk suture (4-0 Black silk) AILEESK47510Silk suture (4-0 Black silk) 
Silk suture (3-0 White silk) Baekjae57Silk suture (3-0 White silk) 
Nylon suture (8-0 monofilament) AILEENB825Nylon suture (8-0 monofilament) 
2,3,5-triphenyltetrazolium chloride (TTC)SigmaT8877-25G2,3,5-triphenyltetrazolium chloride (TTC)
Formalin (Formaldehyde solution)JUNSEI69360-1263 20KGFormalin (Formaldehyde solution)
Hematoxylin (Harris Hematoxylin)YD DiagnosticsEasyStainHematoxylin (Harris Hematoxylin)
Eosin (1% Eosin Y Solution)MUTO PURE CHEMICALS3200-2Eosin (1% Eosin Y Solution)
Cresyl violet (acetate)SigmaC5042-10GCresyl violet (acetate)
Paraformaldehyde Sigma-AldrichP6148-1KGParaformaldehyde 
SucroseJUNSEI31365-0350 1KGSucrose
Optimum cutting temperature (OCT) compoundScigen4583Optimum cutting temperature (OCT) compound
Disecting KnifeFine Science Tools10055-12Disecting Knife
#4 ForcepFine Science Tools11241-30#4 Forcep
#5 ForcepFine Science Tools11254-20#5 Forcep
#6 ForcepFine Science Tools11260-20#6 Forcep
#7 Fine ForcepFine Science Tools11274-20#7 Fine Forcep
Surgical ScissorsFine Science Tools14001-12Surgical Scissors
Extra Fine Bonn ScissorsFine Science Tools14084-08Extra Fine Bonn Scissors
Moria Pascheff-Wolff Spring ScissorsFine Science Tools15371-92Moria Pascheff-Wolff Spring Scissors
Vessel Dilating ForcepFine Science Tools18153-11Vessel Dilating Forcep

References

  1. Bejot, Y., Delpont, B., Giroud, M. Rising stroke incidence in young adults: more epidemiological evidence, more questions to be answered. Journal of the American Heart Association. 11 (5), (2016).
  2. Hadadha, M., Vakili, A., Bandegi, A. R. Effect of the inhibition of hydrogen sulfide synthesis on ischemic injury and oxidative stress biomarkers in a transient model of focal cerebral ischemia in rats. Journal of Stroke and Cerebrovascular Diseases. 24 (12), 2676-2684 (2015).
  3. Durukan, A., Tatlisumak, T. Animal models of ischemic stroke. Article in Handbook of Clinical Neurology. 92, 43-66 (2009).
  4. Kim, D. Animal Models of Stroke. Brain and Neurorehabilitation. 4 (1), 1-11 (2011).
  5. Rizzato, G., Scalabrin, E., Radaelli, M., Capodaglio, G., Piccolo, O. A new exploration of licorice metabolome. Food Chemistry. 221, 959-968 (2017).
  6. Zhu, Z., et al. Rapid determination of flavonoids in licorice and comparison of three licorice species. Journal of Separation Science. 39 (3), 473-482 (2016).
  7. Ota, M., Mikage, M., Cai, S. Q. Herbological study on the medicinal effects of roasted licorice and honey-roasted licorice. Yakushigaku Zasshi. 50 (1), 38-45 (2015).
  8. Lim, C., et al. Licorice pretreatment protects against brain damage induced by middle cerebral artery occlusion in mice. Journal of Medicinal Food. 21 (5), 474-480 (2018).
  9. Koizumi, J. Y., Nakazawa, T., Ooneda, G. Experimental studies of ischemic brain edema. Nosotchu. 8 (1), 1-8 (1986).
  10. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols. 2008, (2008).
  11. Zhu, Y., Liu, F., Zou, X., Torbey, M. Comparison of unbiased estimation of neuronal number in the rat hippocampus with different staining methods. Journal of Neuroscience Methods. 254, 73-79 (2005).
  12. Alberts, M. J., Ovbiagele, B. Current strategies for ischemic stroke prevention: role of multimodal combination therapies. Journal of Neurology. 254 (10), 1414-1426 (2007).
  13. Pinto, A., Tuttolomondo, A., Di Raimondo, D., Fernandez, P., Licata, G. Cerebrovascular risk factors and clinical classification of strokes. Seminars in Vascular Medicine. 4 (3), 287-303 (2004).
  14. Barlow, S. J. Identifying the brain regions associated with acute spasticity in patients diagnosed with an ischemic stroke. Somatosensory and Motor Research. 33 (2), 1-8 (2016).
  15. Roth, S., Liesz, A. Stroke research at the crossroads - where are we heading. Swiss Medical Weekly. 146, 14329 (2016).
  16. Feuerstein, G. Z., Wang, X. Animal models of stroke. Molecular Medicine Today. 6 (3), 133-135 (2000).
  17. Herson, P. S., Traystman, R. J. Animal models of stroke: translational potential at present and in 2050. Future Neurology. 9 (5), 541-551 (2014).
  18. Kumar, A., Gupta Aakriti, V. A review on animal models of stroke: an update. Brain Research Bulletin. 122, 35-44 (2016).
  19. O'Collins, V. E., Donnan, G. A., Howells, D. W. History of animal models of stroke. International Journal of Stroke. 6 (1), 77-78 (2011).
  20. Ji, S., et al. Bioactive constituents of Glycyrrhiza uralensis (licorice): discovery of the effective components of a traditional herbal medicine. Journal of Natural Products. 79 (2), 281-292 (2016).
  21. Yang, R., Wang, L. Q., Yuan, B. C., Liu, Y. The pharmacological activities of licorice. Planta Medica. 81 (18), 1654-1669 (2015).
  22. Yang, R., Yuan, B. C., Ma, Y. S., Zhou, S., Liu, Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharmaceutical Biology. 55 (1), 5-18 (2017).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

NeuroprotectiveGlycyrrhizae Radix Et RhizomaTransient Middle Cerebral Artery OcclusionMouse ModelNatural CompoundsIschemic TimingMiddle Cerebellar ArteryGlycyrrhizae Radix Et Rhizome ExtractMethanol ExtractionFreeze dryingDimethylsulfoxideC57BL 6 MouseCommon Carotid ArteryExternal Carotid ArteryInternal Carotid ArterySilicone coated Monofilament

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved