JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Measuring Interactions of Globular and Filamentous Proteins by Nuclear Magnetic Resonance Spectroscopy (NMR) and Microscale Thermophoresis (MST)

Published: November 2nd, 2018

DOI:

10.3791/58537

1Department of Biochemistry, University of Alberta

Filamentous proteins such as vimentin provide organization within cells by providing a structural scaffold with sites that bind proteins containing plakin repeats. Here, a protocol for detecting and measuring such interactions is described using the globular plakin repeat domain of envoplakin and the helical coil of vimentin. This provides a basis for determining whether a protein binds vimentin (or similar filamentous proteins) and for measurement of the affinity of the interaction. The globular protein of interest is labeled with 15N and titrated with vimentin protein in solution. A two-dimensional NMR spectrum is acquired to detect interactions by observing changes in peak shape or chemical shifts, and to elucidate effects of solution conditions including salt levels, which influence vimentin quaternary structure. If the protein of interest binds the filamentous ligand, the binding interaction is quantified by MST using the purified proteins. The approach is a straightforward way for determining whether a protein of interest binds a filament, and for assessing how alterations, such as mutations or solution conditions, affect the interaction.

Tags

Keywords Protein Interaction

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved