A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we present a direct intrathecal injection technique using 1% lidocaine hydrochloride in a viral solution to ensure efficient adeno-associated virus delivery to small animals and establish a scoring system to predict transduction efficiency in the central nervous system according to the degree of transient weakness induced by lidocaine.
Intrathecal (IT) injection of adeno-associated virus (AAV) has drawn considerable interest in CNS gene therapy by virtue of its safety, noninvasiveness, and excellent transduction efficacy in the CNS. Previous studies have demonstrated the therapeutic potency of AAV-delivered gene therapy in neurodegenerative disorders by IT administration. However, high rates of unpredictable failure due to the technical limitation of IT administration in small animals have been reported. Here, we established a scoring system to indicate the success extent of lumbar puncture in small animals by adding 1% lidocaine hydrochloride into the injection solution. We further show that the extent of transient weakness following injection can predict the transduction efficiency of AAV. Thus, this IT injection method can be used to optimize therapeutic trials in mouse models of CNS diseases that afflict wide regions of the CNS.
AAV can mediate long-term and widespread gene expression in the CNS transduction with few side effects, and therefore has become one of the most promising vehicles for gene therapy to treat CNS diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Alzheimer's disease (AD), lysosomal storage diseases (LSD), Gaucher disease (GD), and neuronal ceroid lipofuscinosis (NCL)1. Presently, more than 100 AAV serotypes have been isolated from humans and animals. Among these, at least 12 have been used in preclinical and clinical trials, including the most commonly used gene vectors such as AAV1, 2, 4, 5, 6, 8, 9, rAAVrh.8, and rAAVrh.101,2,3,4,5,6.
Different CNS diseases require different AAV delivery strategies due to the various affected CNS regions and cell types. The CNS regions and cell types that AAV can transduce varies depending on the serotype as well as delivery method. For example, rAAVrh10 has been shown to transduce predominantly astrocytes when delivered by systemic intravenous injection (IV), whereas it transduced both neurons and glia when delivered by intrathecal injection4,7. Additionally, parenchyma injection resulted in local transduction to the vicinity of the injection site, whereas injection into the cerebrospinal fluid (CSF) through intraventricular or intrathecal injection resulted in widespread CNS transduction8. Studies have also demonstrated therapeutic potency of AAV-delivered gene therapy in neurodegenerative disorders by IT administration9,10,11. In diseases that affect broad areas of the CNS such as ALS, intrathecal injection into the CSF has been shown to cover most areas that are afflicted by the disease with a lower dose, compared to a systemic delivery method4,10. Recent studies have also shown that lumbar puncture can be used to inject AAV in mouse models for ALS, which avoids potential injuries associated with laminectomy and intrathecal catheterization4.
Experimental direct lumbar puncture was first used to deliver agents, especially anesthetics, to the spinal cord for analgesia and anesthesia in 188512,13. In this report, we illustrate the lumbar puncture IT injection method in adult mice with the aid of 1% lidocaine hydrochloride, a local amide-derived anesthetic, in the injection solution to evaluate and monitor injection quality. Successful injections were marked by lidocaine-induced transient paralysis, whereas failed injections did not show this behavior. We classified the level of transient weakness as one of five grades to help predict the injection efficiency. Finally, we show that the rAAVrh10 transduction level may be predicted by the grade of paralysis. Therefore, this intrathecal AAV delivery method can be used to enhance AAV-mediated gene-delivery for experimental therapy of CNS diseases.
FVB/NJ mice were bred in the animal facility of Key Laboratory of Hebei Neurology. All mouse experiments were approved by the Second Hospital of Hebei Medical University Ethics Committee and carried out according to the regulations of laboratory animal management promulgated by the Ministry of Science and Technology of the People's Republic of China.
1. Preparation of 20% Lidocaine Hydrochloride Stock Solution
2. Direct Intrathecal AAV Delivery in Awake Mice
3. Tissue Preparation for Immunohistochemical Staining
4. Immunohistochemistry
Mice showed different degrees of transient weakness right after IT injection of AAV solution in 1% lidocaine hydrochloride due to various quality of intrathecal injection. According to the semi-quantitative 5-grade scoring system we have established, we tested the transduction patterns of AAV in mice with different degrees of lidocaine-induced limb weakness (score 0, n = 2; score 1, n = 1; score 4, n = 4; score 5, n = 3). EGFP immunostaining of spinal cords showed either no or little tran...
Technically, there are several critical steps during the IT injection in awake mice. First, proper gesture and firm control of the mice throughout the entire operation is a prerequisite for successful delivery. Second, the most difficult point is feeling the intervertebral space with the needle tip, as it is necessary not to insert too deeply without resistance or insert forcibly under strong resistance in the case of injuring the animals or bending the needle tip. Third, although the transient paralysis due to lidocaine...
The authors have nothing to disclose.
This work was funded by a grant from HEBEI Provincial Department of Human Resources and Social Security (CY201605) and a grant from Natural Science Foundation of Hebei Province (H2017206101), and we are very grateful to Dr. for Guangping Gao, who provided the AAV for this study.
Name | Company | Catalog Number | Comments |
FVB/NJ mice | Charles River Laboratories China | ||
Lidocaine hydrochloride monohydrate | HEOWNS | 73-78-9 | |
AAV | Viral Vector Core of the Gene Therapy Center at University of Massachusetts Medical School | ||
25 µL Hamilton syringe/27-30 G needle | GASTIGHT | 1702 | |
O.C.T compond | SAKURA | 4583 | |
H 2O 2 | SHUI HUAN PAI | 170401 | |
Goat serum | Solarbio | S9070 | |
Triton X-100 | LIFE SCIENCES | T8200 | |
Rabbit anti-GFP | Life tech | G10362 | 1:333 dilution |
The second antibody (goat-anti rabbit) | Jackson Immuno Research | 111-005-144 | 1:1,000 dilution |
VECTASTAIN ABC REAGENT | Vector Lab | PK-6100 | |
ImmPACT DAB Peroxidase Substrate Kit | Vector Lab | SK-4105 | |
Mounting medium for fluorescence with DAPI | Vectorshield | H-1200 | |
NaCl | Yong Da Chemical | ||
NaH2PO4·2H2O | Yong Da Chemical | ||
Na2HPO4·12H2O | Yong Da Chemical | ||
Paraformaldehyde | Yong Da Chemical | 307699 | |
Adhesion Microscope Slides | CITOGLAS | 17083 | 25 mm x 75 mm |
SUPER-SLIP MICRO-GLAS | Electro Microscopy Siences | 72236-60 | 24 mm x 60 mm |
15 mL Centrifuge tube | CORNING | 430790 | |
96 well cell culture cluster | Coster | 3599 | |
24 well cell culture cluster | Coster | 3524 | |
70% Ethanol | WEN ZHI | ||
Gauze | Wei AN | 05171112 | 8 cm x 10 cm x 12 cm |
1 mL syringe | Hong Da | ||
Microtubes | Plasmed | ||
Micropipet | eppendorf | ||
Peppet tips | Rainin | ||
Centirifuge | eppendorf | 5427R | |
Regerator | Haier | BCD-539WT | |
Filter | MILLEX GP | R4PA42342 | |
Pump | LongerPump | BT-100-2J/YZ1515X | |
Microscope | Olympus | BX53 | |
Freezing-microtome | Leica | CM1520 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved