A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Mutations in the leucine rich repeat kinase 2 gene (LRRK2) cause hereditary Parkinson’s disease. We have developed an easy and robust method for assessing LRRK2-controlled phosphorylation of Rab10 in human peripheral blood neutrophils. This may help identify individuals with increased LRRK2 kinase pathway activity.
The leucine rich repeat kinase 2 (LRRK2) is the most frequently mutated gene in hereditary Parkinson’ disease (PD) and all pathogenic LRRK2 mutations result in hyperactivation of its kinase function. Here, we describe an easy and robust assay to quantify LRRK2 kinase pathway activity in human peripheral blood neutrophils by measuring LRRK2-controlled phosphorylation of one of its physiological substrates, Rab10 at threonine 73. The immunoblotting analysis described requires a fully selective and phosphospecific antibody that recognizes the Rab10 Thr73 epitope phosphorylated by LRRK2, such as the MJFF-pRab10 rabbit monoclonal antibody. It uses human peripheral blood neutrophils, because peripheral blood is easily accessible and neutrophils are an abundant and homogenous constituent. Importantly, neutrophils express relatively high levels of both LRRK2 and Rab10. A potential drawback of neutrophils is their high intrinsic serine protease activity, which necessitates the use of very potent protease inhibitors such as the organophosphorus neurotoxin diisopropylfluorophosphate (DIFP) as part of the lysis buffer. Nevertheless, neutrophils are a valuable resource for research into LRRK2 kinase pathway activity in vivo and should be considered for inclusion into PD biorepository collections.
Attempts to slow or stop Parkinson’s disease (PD) have thus far failed. The discovery of hyperactivating mutations in the leucine rich repeat kinase 2 (LRRK2) that cause and/or increase the risk for PD has led to the development of LRRK2 kinase inhibitors1,2,3. These have now entered clinical trials4. The exact function of LRRK2 is unclear, but a major advancement has been the identification of a subset of Rab GTPase proteins, including Rab10, as the first bona fide physiological substrates of the LRRK2 kinase5,6,7. Key challenges in the era of disease-modifying therapeutics are biochemical markers of LRRK2 kinase activation status and target engagement of LRRK2 kinase inhibitors.
So far, the principal pharmacokinetic marker for LRRK2 inhibitors in vivo has been a cluster of constitutively phosphorylated serine residues of LRRK2, in particular serine 935, that become dephosphorylated in response to diverse LRRK2 inhibitors8,9. However, serine 935 phosphorylation does not correlate with intrinsic cellular LRRK2 kinase activity because it is not directly phosphorylated by LRRK2 and is still phosphorylated in kinase-inactive LRRK210. LRRK2 kinase activity correlates well with autophosphorylation of serine 1292, but it is in practical terms not a suitable readout for endogenous LRRK2 kinase activity by immunoblot analysis of whole cell extracts due to the current lack of reliable and phosphospecific antibodies for this site10,11.
We have developed a robust and easy assay to quantify LRRK2 kinase pathway activity in human peripheral blood cells that measures LRRK2-controlled phosphorylation of its physiological target protein Rab10 at threonine 7311. Peripheral blood is easily accessible by venesection, which is a low risk and quick procedure that causes minimal discomfort. We focus on human peripheral blood neutrophils because they constitute an abundant (37–80% of all white blood cells) and homogeneous cell population that expresses relatively high levels of both LRRK2 and Rab1011. Furthermore, peripheral blood neutrophils can be isolated quickly and efficiently by employing an immunomagnetic negative approach. To ensure that the subsequent observed Rab10 phosphorylation is mediated by LRRK2, each batch of neutrophils is incubated with or without a potent and selective LRRK2 kinase inhibitor (we use and recommend MLi-2)2,12. This is then followed by cell lysis in a buffer containing the protease inhibitor diisopropyl fluorophosphate (DIFP), which is necessary for suppressing the intrinsic serine protease activity that is known to be high in neutrophils13. For the final analysis by quantitative immunoblotting, we recommend using the MJFF-pRab10 rabbit monoclonal antibody that specifically detects the Rab10 Thr73-phosphoepitope and does not cross-react with other phosphorylated Rab proteins14. Selectivity and specificity of this antibody has been validated in overexpression models of different Rab proteins and a A549 Rab10 knock-out cell line14. Thus, we measure the difference in Rab10 phosphorylation in neutrophil lysates that have been treated with and without a potent and selective LRRK2 kinase inhibitor2. Alternatively, samples could also be analyzed by other methods, such as quantitative mass spectrometry.
In conclusion, LRRK2-controlled Rab10 phosphorylation is a superior marker of LRRK2 kinase activity to LRRK2 phosphorylation at serine 935 and human peripheral blood neutrophils are a valuable resource for PD research into LRRK2. Our protocol provides a robust and easy assay to interrogate LRRK2 pathway activity in peripheral blood neutrophils and allows biochemical stratification of individuals with increased LRRK2 kinase activity15. Importantly, such individuals may benefit from future LRRK2 kinase inhibitor treatment.
According to local UK regulation all manipulations and pipetting of human blood are undertaken in a category 2 biological safety cabinet. All procedures were performed in compliance with local ethics review board and all participants have provided informed consent.
1. Preparation
2. Neutrophil isolation from whole blood
3. LRRK2 kinase inhibitor treatment of pure neutrophils
Our assay allows interrogating the activation of the PD-associated LRRK2 kinase in human peripheral blood neutrophils with LRRK2-dependent Rab10 phosphorylation as a readout. Neutrophils are a homogenous and abundant peripheral white blood cell population that expresses high levels of both the LRRK2 and Rab10 proteins (Figure 1). The only other cell population among the remaining peripheral blood mononuclear cells (PBMCs) with high copy numbers of both proteins are monocytes, but these make ...
Compelling clinical, genetic, and biochemical evidence points towards an important role for LRRK2 and in particular its kinase function in Parkinson’s disease7. LRRK2 kinase inhibitors have been developed and are entering clinical trials2,4,12. As such there is a need for exploiting LRRK2 as a biomarker for target engagement as well as patient stratification. Our protocol describes a robust and easy...
The authors have nothing to disclose.
We thank the healthy volunteers who kindly donated blood for the present study. We thank The Michael J. Fox Foundation for Parkinson’s Research (MJFF) and the Fox BioNet study leadership (FBN) for their support and input towards the written protocol and the video. We thank Professor Alexander Zimprich from the University of Vienna in Austria for testing our protocol and collaboration. We value the contributions of Paul Davies to the project (general manager of the MRC PPU). We also recognize the excellent technical support of the MRC Protein Phosphorylation and Ubiquitylation Unit (PPU) namely Chemical Synthesis (Natalia Shpiro for synthesising MLi-2), MRC PPU Reagents and Services antibody purification teams (coordinated by Hilary McLauchlan and James Hastie). We thank Mhairi Towler and Fraser Murdoch from Vivomotion for their help with making the videos and animations. We thank Steve Soave from 81 films for assistance with the final edits. Esther Sammler is supported by a Scottish Senior Clinical Academic Fellowship and has received funding from Parkinson's UK (K-1706).
Name | Company | Catalog Number | Comments |
1 mL Pipette tips | Sarstedt | 70.762 | or equivalent |
1.5 mL Micro tubes | Sarstedt | 72.690.001 | or equivalent |
10 mL Pipette tips | Sarstedt | 86.1254.025 | or equivalent |
10 μL Pipette tips | Sarstedt | 70.113 | or equivalent |
15 mL falcon tube | Cellstar | 188 271 | or equivalent |
200 μL Pipette tips | Sarstedt | 70.760.002 | or equivalent |
25 mL Pipette tips | Sarstedt | 86.1685.001 | or equivalent |
50 mL falcon tube | Cellstar | 227 261 | or equivalent |
BD Vacutainer Hemogard Closure Plastic K2-EDTA Tube | BD | BD 367525 | or equivalent |
Beckman Coulter Allegra X-15R centrifuge | Beckman | or equivalent centrifuge with swimging bucket rotator for 15 mL and 50 mL falcon tubes at speed 1000-1200 x g | |
Category 2 biological safety cabinet. | |||
cOmplete(EDTA-free) protease inhibitor cocktail | Roche | 11836170001 | |
DIFP (Diisopropylfluorophosphate) | Sigma | D0879 | Prepare 0.5M stock solution in isopropanol using special precautions |
Dimethyl sulfoxide | Sigma | 6250 | |
Dry ice or liquid nitrogene | |||
Dulbecco's phosphate-buffered saline | ThermoFisher | 14190094 | or equivalent |
Easy 50 EasySep Magnet | Stemcell | 18002 | for holding 1 x 50ml conical tube |
EasySep Direct Human Neutrophil Isolation Kit | Stemcell | 19666 | This contains Solutions called “Isolation Cocktail” and “RapidSpheres magnetic beads |
EGTA | Sigma | E3889 | |
Eppendorf centrifuge 5417R centrifuge | Eppendorf | ||
Ethanol, in spray bottle | |||
Ethylenediaminetetraacetic acid | Sigma | E6758 | |
Ice | |||
Isopropanol (anhydrous grade) | Sigma | 278475 | |
Lysis buffer (50 mM Tris-HCl pH 7.5, 1%(v/v) Triton X-100, 1 mM EGTA, 1 mM Na3VO4, 50 mM NaF, 10 mM β-glycerophosphate, 5 mM sodium pyrophosphate, 0.27 M sucrose, 0.1% (v/v) β-mercaptoethanol, 1x cOmplete(EDTA-free) protease inhibitor cocktail (Roche), 1 μg/ml Microcystin-LR, 0.5 mM diisopropylfluorophosphate (DIFP). | alternatively frozen lysis buffer in aliquots without Microcystin-LR, DIFP available from MRC-PPU Reagents (http://mrcppureagents.dundee.ac.uk/) | ||
Merck LRRK2 inhibitor II (MLi-2) | Merck | 438194-10MG | or equivalent (potent and selective LRRK2 inhinitor) |
Microcystin-LR | Enzo Life Sciences | ALX-350-012-M001 | 1 mg/ml stock in DMSO and store at -80 oC. |
Na3VO4 | Aldrich | 450243 | |
NaF | Sigma | S7920 | |
Odyssey CLx scan Western Blot imaging system | Odyssey | ||
Permanent marker pen | |||
Personal protection equipment | |||
RPMI 1640 Medium | ThermoFisher | 21875034 | or equivalent |
sodium pyrophosphate | Sigma | S22 | |
sucrose | Sigma | S0389 | |
β-glycerophosphate | Sigma | 50020 | |
β-mercaptoethanol | Sigma | M3148 | |
Suggested antibodies for Western blotting | |||
Anti-RAB10 (phospho T73) antibody [MJF-R21] | abcam | ab230261 | |
Anti-α-tubulin | Cell Signaling Technologies | 5174 | used at 1:2000 dilution |
Goat anti-mouse IRDye 680LT | LI-COR | 926-68020 | used at 1:10,000 dilution |
Goat anti-mouse IRDye 800CW | LI-COR | 926-32210 | used at 1:10,000 dilution |
Goat anti-rabbit IRDye 800CW | LI-COR | 926-32211 | used at 1:10,000 dilution |
MJFF-total Rab10 mouse antibody | generated by nanoTools (nanotools.de) | not applicable* | used at 2 μg/ml final concentration; * The MJFF-total Rab10 antibody generated by nanoTools (www.nanotools.de) [11] will be commercialised by the Michael J Fox Foundation in 2018 |
Mouse anti-LRRK2 C-terminus antibody | Antibodies Incorporated | 75-253 | used at 1 μg/ml final concentration |
pS935-LRRK2 | MRC PPU Reagents and Services | UDD2 | MJFF-total Rab10 mouse antibody |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved