A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We offered captive mongooses placebo oral rabies vaccine baits with ethyl or methyl iophenoxic acid as a biomarker and verified bait uptake using a novel liquid chromatography with tandem mass spectrometry (LC-MS/MS) method.
The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations.
Rabies virus (RABV) is a negative sense single stranded lyssavirus, and circulates among diverse wildlife reservoir species within the orders Carnivora and Chiroptera. Multiple species of mongoose are reservoirs of RABV, and the small Indian mongoose (Herpestes auropunctatus) is the only reservoir in Puerto Rico and other Caribbean islands in the Western Hemisphere1,2,3. The control of RABV circulation in wildlife reservoirs is typically accomplished through a strategy of oral rabies vaccination (ORV). In the United States (US), this management activity is coordinated by the USDA/APHIS/Wildlife Services National Rabies Management Program (NRMP)4. Currently no wildlife ORV program exists in Puerto Rico. Research into rabies vaccines and various bait types for mongooses has been conducted with promising results suggesting an ORV program for mongooses is possible5,6,7,8.
Monitoring the impact of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RV antibody seroprevalence. However, this strategy may be challenging in areas with an active wildlife ORV programs or in areas where RV is enzootic and background levels of RABV neutralizing antibodies (RVNA) are present in reservoir species. In such situations, a biomarker included in the bait or the external bait matrix may be useful.
Various biological markers have been used to monitor bait uptake in numerous species, including raccoons (Procyon lotor)9,10,stoats (Mustela ermine)11,12, European badgers (Meles meles)13, wild boars (Sus scrofa)14, small Indian mongooses15 and prairie dogs (Cynomysludovicianus)16,17, among others. In the US, operational ORV baits often include a 1% tetracycline biomarker in the bait matrix to monitor bait uptake18,19. However, drawbacks to the use of tetracycline include a growing concern over the distribution of antibiotics into the environment and that detection of tetracycline is typically invasive, requiring tooth extraction or destruction of the animal to obtain bone samples20. Rhodamine B has been evaluated as a marker in a variety of tissues and can be detected using ultraviolet (UV) light and fluorescence in hair and whiskers10,21.
Iophenoxic acid (IPA) is a white, crystalline powder that has been used to evaluate bait consumption in coyotes (Canis latrans)22, arctic fox (Vulpes lagopus)23, red fox (Vulpes vulpes)24, raccoons9,25, wild boar14, red deer (Cervus elaphus scoticus)26, European badgers12 and ferrets (M. furo)27, among several other mammalian species. Retention times of IPA varies by species from less than two weeks in some marsupials28,29, to at least 26 weeks in ungulates26 and over 52 weeks in domestic dogs (Canis lupus familiaris)30. Retention times may also be dose-dependent31. Iophenoxic acid binds strongly to serum albumin and was historically detected by measuring blood iodine levels32. This indirect approach was supplanted by high-performance liquid chromatography (HPLC) methods to directly measure iophenoxic acid concentrations with UV detection33, and eventually with liquid chromatography and mass spectrometry (LCMS)34,35. For this study, a highly sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was developed that utilizes multiple reaction monitoring (MRM) to quantify two analogues of iophenoxic acid. Our objective was to use this LC-MS/MS method to evaluate the marking ability of 2-(3-hydroxy-2,4,6-triiodobenzyl)propanoic acid (methyl-IPA or me-IPA) and 2-(3-hydroxy-2,4,6-triiodobenzyl)butanoic acid (ethyl-IPA or et-IPA) and when delivered in an ORV bait to captive mongooses.
Mongooses were live captured in cage traps baited with commercially available smoked sausages and fish oil. Mongooses were housed in individual 60 cm x 60 cm x 40 cm stainless steel cages and fed a daily ration of ~50 g commercial dry cat food, supplemented twice per week with a commercially available chicken thigh. Water was available ad libitum. We delivered two derivatives of IPA, ethyl-IPA and methyl-IPA, to captive mongooses in placebo ORV baits. All baits were composed of a 28 mm x 20 mm x 9 mm foil blister pack with an external coating (hereafter "bait matrix") containing powdered chicken egg and gelatin (Table of Materials). Baits contained 0.7 mL of water or IPA derivative and weighed approximately 3 g, of which ~2 g was the external bait matrix.
We offered 16 captive mongooses et-IPA in three concentrations: 0.14% (2.8 mg et-IPA in ~2 g bait matrix; 3 males [m], 3 females [f]), 0.4% (2.8 mg et-IPA in 0.7 mL blister pack volume; 3m, 3f), and 1.0% (7.0 mg ethyl-IPA in 0.7 mL blister pack volume; 2m, 2f). The overall dose of 2.8 mg corresponds to a dose rate of 5 mg/kg27,36 and is based on an average mongoose weight of 560 g in Puerto Rico. We selected 1% as the highest concentration as research suggests taste aversion to some biomarkers may occur at concentrations >1% in some species37. We only offered the 1% dose in the blister pack as flocculation prevented the solute from dissolving in the solvent sufficiently to be evenly incorporated into the bait matrix. One control group (2m, 1f) received baits filled with sterile water and no IPA. We offered baits to mongooses in the morning (~8 a.m.) during or prior to feeding of their daily maintenance ration. Bait remains were removed after approximately 24 hours. We collected blood samples prior to treatment, one day post-treatment and then weekly up to 8 weeks post-treatment. We anesthetized mongooses by inhalation of isoflurane gas and collected up to 1.0 mL of whole blood by venipuncture of the cranial vena cava as described for ferrets38. We centrifuged whole blood samples, transferred sera to cryovials and stored them at -80 °C until analysis. Not all animals were sampled during all time periods to minimize the impacts of repeated blood draws on the health of the animals. Control animals were sampled on day 0, then weekly for up to 8 weeks post-treatment.
We delivered me-IPA in three concentrations: 0.035% (0.7 mg), 0.07% (1.4 mg) and 0.14% (2.8 mg), all incorporated into the bait matrix, with 2 males and 2 females per treatment group. Two males and two females received baits filled with sterile water and no IPA. Bait offering times and mongoose anesthesia are described above. We collected blood samples prior to treatment on day 1, and then weekly up to 4 weeks post-treatment.
We tested serum concentration data for normality and estimated means for serum IPA concentrations of different treatment groups. We used a linear mixed model to compare mean serum et-IPA concentrations pooled across individuals. Bait type (matrix/blister pack) was a fixed effect in addition to experimental day, whereas animal ID was a random effect. All procedures were run using common statistical software (Table of Materials) and significance was evaluated at α = 0.05.
All procedures were approved by the USDA National Wildlife Research Center's institutional Animal Care and Use Committee under approved research protocol QA-2597.
NOTE: The following protocol describes the analysis procedure to detect methyl-iophenoxic acid in mongoose serum. This method is the final version of an iterative process that began with analysis of ethyl-iophenoxic acid in mongoose serum. During the initial evaluation of ethyl-iophenoxic acid minor modifications were made to the methods, resulting in the final protocol presented below. Representative results include those obtained during both iterations.
1. Preparation of solutions and standards
2. Sample preparation
CAUTION: Personnel performing this procedure must have received the full series of rabies pre-exposure prophylaxis and have a documented rabies antibody titer above 0.5 IU from a Federal Occupational Health designated medical facility. Personnel must wear lab coats and eye protection at all times while performing the extraction. CAUTION: Perform steps 2.3−2.6 in a class II biosafety cabinet.
3. Quality control samples
CAUTION: Follow the cautionary statements described in section 2.
NOTE:The following procedure describes the minimum number of quality control (QC) samples required for an analysis. Replicates at each level are recommended if sufficient control mongoose serum is available.
4. LC-MS/MS analysis
5. Quantification
Representative ion chromatograms from a me-IPA analysis are presented in Figure 1. The control mongoose serum (Figure 1A) illustrates the retention time of et-IPA (surrogate analyte) and the absence of me-IPA at the indicated retention time. The quality control sample (Figure 1B) illustrates the baseline separation of me-IPA from et-IPA as well as the quantifier and qualifier transitions for me-IPA. ...
The LC-MS/MS method developed for the studies utilized the selectivity of multiple reaction monitoring to accurately quantify me-IPA and et-IPA in mongoose serum. The selectivity of MS/MS detection also allowed for a simple clean-up protocol relying solely on acetonitrile to precipitate proteins from serum prior to analysis.
Iophenoxic acids are soluble in ACN but are practically insoluble in water. To exclude water from the ACN extraction, sodium chloride was added to force a clear water:ACN ...
Authors AV and SO are fulltime employees of an oral rabies vaccine bait manufacturer.
This research was supported in part by the intramural research program of the US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program and IDT Biologika (Dessau-Rosslau, Germany).
Name | Company | Catalog Number | Comments |
Acetonitrile, Optima grade | Fisher | A996 | |
Analytical balance | Mettler Toledo | XS204 | |
C18 column, 2.1 x 50 mm, 2.5-µm particle size | Waters Corp. | 186003085 | |
ESI Source | Agilent | G1958-65138 | |
Ethyl-iophenoxic acid, 97 % | Sigma Aldrich | N/A | Lot MKBP5399V |
Formic acid, LC/MS grade | Fisher | A117 | |
LCMS software | Agilent | MassHunter Data Acquisition and Quantitative Analysis | |
Methyl-iophenoxic acid, 97 % (w/w) | PR EuroChem Ltd. | N/A | Lot PR0709514717 |
Microanalytical balance | Mettler Toledo | XP6U | |
Microcentrifuge | Eppendorf | 5415C | |
MS/MS | Agilent | G6470A | |
N-Evap | Organomation | 115 | |
Oral Rabies Vaccine Baits | IDT Biologika, Dessau Rossleau, Germany | N/A | |
Propyl-iophenoxic acid, 99 % (w/w) | PR EuroChem Ltd. | N/A | Lot PR100612108RR |
Repeat pipettor | Eppendorf | M4 | |
Screw-top autosampler vial caps, PTFE-lined | Agilent | 5190-7024 | |
Sodium chloride, Certified ACS grade | Fisher | S271 | |
Statistical Software Package | SAS Institute, Cary, North Carolina, USA | N/A | |
Trifluoroacetic acid, 99 % | Alfa Aesar | L06374 | |
UPLC | Agilent | 1290 Series | |
Vortex Mixer | Glas-Col | 099A PV6 | |
0.2-mL pipettor tips | Eppendorf | 30089.413 | |
0.5-mL pipettor tips | Eppendorf | 30089.421 | |
1.5-mL microcentrifuge tubes | Fisher | 14-666-325 | |
1250-µL capacity pipette tips | GeneMate | P-1233-1250 | |
1-mL pipettor tips | Eppendorf | 30089.43 | |
2-mL amber screw-top autosampler vials | Agilent | 5182-0716 | |
5-mL pipettor tips | Eppendorf | 30089.456 | |
80-position microcentrifuge tube rack | Fisher | 05-541-2 | |
8-mL amber vials with PTFE-lined caps | Wheaton | 224754 | |
70 % (v/v) isopropanol | Fisher | A459 | |
100-1000 µL air displacement pipette | Eppendorf | ES-100 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved