Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

To reproducibly count the numbers of mRNAs in individual oocytes, single molecule RNA fluorescence in situ hybridization (RNA-FISH) was optimized for non-adherent cells. Oocytes were collected, hybridized with the transcript specific probes, and quantified using an image quantification software.

Abstract

Current methods routinely used to quantify mRNA in oocytes and embryos include digital reverse-transcription polymerase chain reaction (dPCR), quantitative, real-time RT-PCR (RT-qPCR) and RNA sequencing. When these techniques are performed using a single oocyte or embryo, low-copy mRNAs are not reliably detected. To overcome this problem, oocytes or embryos can be pooled together for analysis; however, this often leads to high variability amongst samples. In this protocol, we describe the use of fluorescence in situ hybridization (FISH) using branched DNA chemistry. This technique identifies the spatial pattern of mRNAs in individual cells. When the technique is coupled with Spot Finding and Tracking computer software, the abundance of mRNAs in the cell can also be quantified. Using this technique, there is reduced variability within an experimental group and fewer oocytes and embryos are required to detect significant differences between experimental groups. Commercially available branched-DNA SM-FISH kits have been optimized to detect mRNAs in sectioned tissues or adherent cells on slides. However, oocytes do not effectively adhere to slides and some reagents in the kit were too harsh resulting in oocyte lysis. To prevent this lysis, several modifications were made to the FISH kit. Specifically, oocyte permeabilization and wash buffers designed for the immunofluorescence of oocytes and embryos replaced the proprietary buffers. The permeabilization, washes, and incubations with probes and amplifier were performed in 6-well plates and oocytes were placed on slides at the end of the protocol using mounting media. These modifications were able to overcome the limitations of the commercially available kit, in particular, the oocyte lysis. To accurately and reproducibly count the number of mRNAs in individual oocytes, computer software was used. Together, this protocol represents an alternative to PCR and sequencing to compare the expression of specific transcripts in single cells.

Introduction

Reverse-transcriptase polymerase chain reaction (PCR) has been the gold standard for mRNA quantitation. Two assays, digital PCR (dPCR)1 and quantitative, real time PCR (qPCR)2 are currently used. Of the two PCR techniques, dPCR has greater sensitivity than qPCR suggesting that it could be used to measure mRNA abundance in single cells. However, in our hands, dPCR analysis of low abundance mRNAs in pools of 5 to 10 oocytes per each experimental sample has produced data with low reproducibility and high variation3. This is likely due to the experimental error associated with RNA extraction and rever....

Protocol

Animal procedures were reviewed and approved by the Institutional Animal Care and Use Committee at the University of Nebraska-Lincoln and all methods were performed in accordance with relevant guidelines and regulations. For this study, CD-1 outbred mice had ad libitum access to normal rodent chow and water; they were maintained in a 12:12 dark: light cycle.

1. Preparation of required media

  1. For base media (OMM), add 100 mM NaCl, 5 mM KCl, 0.5 mM KH2PO4, and 1........

Representative Results

Upon the completion of the protocol, the result will be individual images from confocal z-series (Figure 4A and Figure 5), stitched images (Figure 4C), and mRNA counts (Figure 4B). When multiplexing is performed, there will also be merged images showing the label for two different mRNAs (Fig.......

Discussion

A series of minor steps during the protocol will ensure successful fluorescence and accurate counts of mRNAs. First, the protocol must be performed immediately after collection and fixation of the oocytes. Note that PVP is added to the 4% paraformaldehyde fixation buffer to prevent oocytes from sticking to each other. We found that it is necessary to perform the experiment immediately after the collection and fixation of the oocytes. Any delay results in a much lower fluorescence signal that would result in undercounting.......

Acknowledgements

We thank Dr. Daniel R. Larson for his generous help with the installation and use of the Spot Finding and Tracking Program 13 and the technical support of the University of Nebraska Lincoln Microscopy Core for the confocal microscopy imaging. This study represents a contribution of the University of Nebraska Agricultural Research Division, Lincoln, Nebraska and was supported by UNL Hatch Funds (NEB-26-206/Accession number -232435 and NEB-26-231/Accession number -1013511).

....

Materials

NameCompanyCatalog NumberComments
(±)-α-Lipoic acidSigma-AldrichT1395Alpha Lipoic Acid
Albumin, Bovine Serum, Low Fatty AcidMP Biomedicals, LLC199899FAF BSA
BD 10mL TB SyringeBecton, Dickinson and Company30965910 mL syringe
BD PrecisionGlide NeedleBecton, Dickinson and Company30510927 1/2 gauge needle
Calcium chloride dihydrateSigma-AldrichC7902CaCl2-2H2O
Citric acidSigma-AldrichC2404Citrate
D-(+)-GlucoseSigma-AldrichG6152Glucose
Disodium phosphateNa2HPO4
Easy Grip Petri DishFalcon Corning35100835 mm dish
Edetate DisodiumAvantor8994-01EDTA
Extra Fine Bonn ScissorsFine Science Tools14084-08Straight, Sharp/Sharp, non-serrated, 13mm cutting edge scissors
Fetal Bovine SerumAtlanta biologicalsS10250FBS
Gentamicin Reagent Solutiongibco15710-064Gentamicin
GlutaMAX-I (100X)gibco35050-061Glutamax
Gold Seal Micro SlidesGold Seal303925 x 75mm slides
Gonadotropin, From Pregnant Mares' SerumSigmaG4877eCG
hCG recombinantNHPPAFP8456AhCG
Hyaluronidase, Type IV-S: From Bovine TestesSigma-AldrichH3884Hyaluronidase
Jewelers Style ForcepsIntegra17-305XForceps 4-3/8", Style 5F, Straight, Micro Fine Jaw
L-(+)-Lactic Acid, free acid MP Biomedicals, LLC190228L-Lactate
Magnesium sulfate heptahydrateSigma-AldrichM2773MgSO4-7H2O
MEM Nonessential Amino AcidsCorning 25-025-ClNEAA
Microscope Cover GlassFisher Scientific12-542-C25 x 25x 0.15 mm cover slips
Mm-Nanog-O2-C2 RNAscope ProbeAdvanced Cell Diagnostics501891-C2Nanog Probe
Mm-Pou5f1-O1-C3 RNAscope ProbeAdvanced Cell Diagnostics501611-C3Pou5f1 Probe
MOPSSigma-AldrichM3183
ParaformaldehydeSigma-AldrichP6148Paraformaldehyde
PES 0.22 um Membrane -sterileMillex-GPSLGP033RS0.22 um filters
PolyvinylpyrrolidoneSigma-AldrichP0930PVP
Potassium chlorideSigma-Aldrich60128KCl
Potassium phosphate monobasicSigma-Aldrich60218KH2PO4
Prolong Gold antifade reagentinvitrogenP36934Antifade reagent without DAPI
RNAscope DAPIAdvanced Cell Diagnostics320858DAPI
RNAscope FL AMP 1Advanced Cell Diagnostics320852Amplifier 1
RNAscope FL AMP 2Advanced Cell Diagnostics320853Amplifier 2
RNAscope FL AMP 3Advanced Cell Diagnostics320854Amplifier 3
RNAscope FL AMP 4 ALT AAdvanced Cell Diagnostics320855Amplifier 4 ALT A
RNAscope FL AMP 4 ALT BAdvanced Cell Diagnostics320856Amplifier 4 ALT B
RNAscope FL AMP 4 ALT CAdvanced Cell Diagnostics320857Amplifier 4 ALT C
RNAscope Fluorescent Multiplex Detection Reagents KitAdvanced Cell Diagnostics320851FISH Reagent Kit
RNAscope Probe 3-plex Negative Control ProbeAdvanced Cell Diagnostics320871Negative Control
RNAscope Probe 3-plex Positive ControlAdvanced Cell Diagnostics320881Positive Control
RNAscope Probe DiluentAdvanced Cell Diagnostics300041Probe Diluent
RNAscope Protease IIIAdvanced Cell Diagnositics322337Protease III
RNAscope Protease III & IV Reagent KitAdvanced Cell Diagnostics322340FISH Protease Kit
RNAscope Protease IVAdvanced Cell Diagnostics322336Protease IV
S/S Needle with Luer Hub 30GComponent Supply Co.NE-301PL-50blunt 30 gauge needle
Sodium bicarbonateSigma-AldrichS6297NaHCO3
Sodium chlorideSigma-AldrichS6191NaCl
Sodium hydroxideSigma-Aldrich306576NaOH
Sodium pyruvate, >= 99%Sigma-AldrichP5280Pyruvate
Solution 6 Well DishAgtechincD186 well dish
TaurineSigma-AldrichT8691Taurine
Tissue Culture DishFalcon Corning35300260 mm dish
Triton X-100Sigma-AldrichX100Triton X-100

References

  1. Vogelstein, B., Kinzler, K. W. Digital PCR. Proceedings of the National Academy of Sciences. 96 (16), 9236-9241 (1999).
  2. MacK, E. M., Smith, J. E., Kurz, S. G., Wood, J. R. CAMP-depende....

Explore More Articles

Single Molecule Fluorescent In Situ Hybridization SM FISHMRNA QuantificationMRNA LocalizationMurine OocytesNanogPou5f1DapBOocyte PreparationFixationPermeabilizationProtease TreatmentProbe Hybridization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved