Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol demonstrates a method for electrochemical roughening of thin-film platinum electrodes without preferential dissolution at grain boundaries. The electrochemical techniques of cyclic voltammetry and impedance spectroscopy are demonstrated to characterize these electrode surfaces.

Abstract

This protocol demonstrates a method for electrochemical roughening of thin-film platinum electrodes without preferential dissolution at grain boundaries of the metal. Using this method, a crack free, thin-film macroelectrode surface with up to 40 times increase in active surface area was obtained. The roughening is easy to do in a standard electrochemical characterization laboratory and incudes the application of voltage pulses followed by extended application of a reductive voltage in a perchloric acid solution. The protocol includes the chemical and electrochemical preparation of both a macroscale (1.2 mm diameter) and microscale (20 µm diameter) platinum disc electrode surface, roughening the electrode surface and characterizing the effects of surface roughening on electrode active surface area. This electrochemical characterization includes cyclic voltammetry and impedance spectroscopy and is demonstrated for both the macroelectrodes and the microelectrodes. Roughening increases electrode active surface area, decreases electrode impedance, increases platinum charge injection limits to those of titanium nitride electrodes of same geometry and improves substrates for adhesion of electrochemically deposited films.

Introduction

Nearly five decades ago, the first observation of surface enhanced Raman spectroscopy (SERS) occurred on electrochemically roughened silver1. Electrochemical roughening of metal foils is still attractive today because of its simplicity over other roughening methods2,3 and its usefulness in many applications like improving aptamer sensors4, improving neural probes5, and improving adhesion to metal substrates6. Electrochemical roughening methods exist for many bulk metals1,

Protocol

​CAUTION: Please consult all relevant safety data sheets (SDS) before use. Several of the chemicals used in this protocol are acutely toxic, carcinogenic, oxidizing and explosive when used at high concentrations. Nanomaterials may have additional hazards compared to their bulk counterpart. Please use all appropriate safety practices when carrying out this protocol including the use of engineering controls (fume hood) and personal protective equipment (safety glasses, gloves, lab coat, full length pants, closed-toe .......

Representative Results

A schematic showing the voltage application for roughening both macroelectrodes and microelectrodes is shown in Figure 2. Optical microscopy can be used to visualize the difference in the appearance of a roughened macroelectrode (Figure 3) or microelectrode (Figure 4). In addition, electrochemical characterization of the Pt surface using impedance spectroscopy and cyclic voltammetry can readily show .......

Discussion

The electrochemical roughening of thin-film macroelectrodes and microelectrodes is possible with oxidation-reduction pulsing. This simple approach does require several key elements to nondestructively roughen thin-film electrodes. Unlike foils, roughening of thin metal films may lead to sample destruction if parameters are not properly chosen. Critical parameters of the roughening procedure are pulse amplitude, duration and frequency. Additionally, ensuring electrode cleanliness and perchloric acid purity prior to the pr.......

Acknowledgements

The authors would like to thank Lawrence Livermore National Laboratory's Center for Bioengineering for support during the preparation of this manuscript. Professor Loren Frank is kindly acknowledged for his collaborations with the group that have enabled fabrication and design of the thin-film Pt microarrays discussed in the above work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by Lab Directed Research and Development Award 16-ERD-035. LLNL IM release LLNL-JRNL-762701.

....

Materials

NameCompanyCatalog NumberComments
AcetoneFisher Scientific, Sigma Aldrich or similarn/aLaboratory grade
EC-Lab SoftwareBio-Logic Science Instrumentsn/aFor instrument control and data analysis
Leakless Silver/Silver Chloride ReferenceeDAQ Company, AustraliaET069-1Free from chloride anion contamination
(or other type of chloride free electrode e.g. Mercury sulfate electrode)
Mercury Sulfate & Acid Electrode Kit Koslow, Scientific Testing Instruments5100Aglass, 9mm version
Milipore DI waterMilliporeSigman/aCertified resistivity of 18.2 MΩ.cm (at 25°C) 
Perchloric acid, 99.9985%Sigma Aldrich311421High Purity
Phosphate-buffered salineTeknovaP400710mM PBS with 100mM NaCl, pH 7
or similar product from elsewhere
Platinum Wire Auxiliary Electrode (7.5 cm)BASiMW-1032Counter electrode
Pt macroelectrodesLawrence Livermore National Laboratoryn/a1.2 mm diameter, 250 nm thick Pt disc electrodes insulated in polyimide. More information in Reference 9.
Pt microelectrode arraysLawrence Livermore National Laboratoryn/a20 µm diameter 250 nM thick Pt disc electrodes insulated in polyimide. More information in Reference 9.
Sulfuric acid, 99.999%Sigma Aldrich339741High Purity
UV & Ozone Dry StripperSamcoUV-1for cleaning electrodes
VersaSTAT 4 PotentiostatAMETEK, Inc.n/aGood time resolution for pulsing tests
VersaStudio SoftwareAMETEK, Inc.n/aFor instrument control
VMP-200 Potentiostat Bio-Logic Science Instrumentsn/aLow current resolution option is preferable for measurements with microelectrodes

References

  1. Fleischmann, M., Hendra, P. J., McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters. 26 (2), 163-166 (1974).
  2. Chung, T., et al. Electrode modificati....

Explore More Articles

Electrochemical RougheningThin film PlatinumMacro And MicroelectrodesSurface Area IncreaseElectrochemical CleaningCyclic VoltammetryPotentiostatPerchloric AcidPlatinum Wire Counter ElectrodeMercury Sulfate Reference Electrode

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved