Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a protocol to study mRNA translation regulation in poxvirus-infected cells using in vitro Transcribed RNA-based luciferase reporter assay. The assay can be used for studying translation regulation by cis-elements of an mRNA, including 5’-untranslated region (UTR) and 3’-UTR. Different translation initiation modes can also be examined using this method.

Abstract

Every poxvirus mRNA transcribed after viral DNA replication has an evolutionarily conserved, non-templated 5'-poly(A) leader in the 5'-UTR. To dissect the role of 5'-poly(A) leader in mRNA translation during poxvirus infection we developed an in vitro transcribed RNA-based luciferase reporter assay. This reporter assay comprises of four core steps: (1) PCR to amplify the DNA template for in vitro transcription; (2) in vitro transcription to generate mRNA using T7 RNA polymerase; (3) Transfection to introduce in vitro transcribed mRNA into cells; (4) Detection of luciferase activity as the indicator of translation. The RNA-based luciferase reporter assay described here circumvents issues of plasmid replication in poxvirus-infected cells and cryptic transcription from the plasmid. This protocol can be used to determine translation regulation by cis-elements in an mRNA including 5'-UTR and 3'-UTR in systems other than poxvirus-infected cells. Moreover, different modes of translation initiation like cap-dependent, cap-independent, re-initiation, and internal initiation can be investigated using this method.

Introduction

According to the central dogma, genetic information flows from DNA to RNA and then finally to protein1,2. This flow of genetic information is highly regulated at many levels including mRNA translation3,4. Development of reporter assays to measure regulation of gene expression will facilitate understanding of regulatory mechanisms involved in this process. Here we describe a protocol to study mRNA translation using an in vitro transcribed RNA-based luciferase reporter assay in poxvirus-infected cells.

Poxviruses comprise many....

Protocol

1. Preparation of DNA Template by PCR for In Vitro Transcription

  1. To prepare the DNA template by PCR, design primers. When designing primers consider crucial characteristics like primer length, annealing temperature (Tm), GC content, 3’ end with G or C etc.
    NOTE: Discussed in detail in these literature25,26,27.
  2. Design primers to generate PCR amplicon .......

Representative Results

The four steps of in vitro transcribed RNA-based luciferase reporter assay: PCR to generate DNA template for In vitro transcription, in vitro transcription to generate mRNA, mRNA transfection, and luciferase measurement, can be seen in the schematic diagram (Figure 1). Designing of primers for both DNA templates (Fluc and Rluc) and the general scheme of overhang extension PCR is illustrated in the schematic (Figure 2A). After PCR.......

Discussion

All four-core steps are critical to the success of the in vitro transcribed RNA-based luciferase reporter assay. Special attention should be given to primer design, especially for the T7 promoter sequence. T7 RNA polymerase starts transcription from the underlined first G (GGG-5'-UTR-AUG-) in T7 promoter added before the 5'-UTR sequence. Although the transcription start site (TSS) starts from the first G at the 5' end, decreasing the number of G's less than three in T7 promoter region decreased the.......

Acknowledgements

The project was funded by the National Institutes of Health (AI128406 www.nih.gov) to ZY and in part by Johnson Cancer Research Center (http://cancer.k-state.edu) in the form of Graduate Student Summer Stipend to PD.

....

Materials

NameCompanyCatalog NumberComments
2X-Q5 Master mixNew England BiolabsM0492High-Fidelity DNA Polymerase used in PCR
3´-O-Me-m7G(5')ppp(5')G RNA Cap Structure AnalogNew England BiolabsS1411LAnti reverse Cap analog or ARCA
Corning 96 Well Half-Area white flat bottom polystyrene microplateCorning3693Opaque walled 96 well white plate with solid bottom
Dual-Luciferase Reporter Assay SystemPromegaE1960Dual-Luciferase Assay Kit (DLAK)
E.Z.N.A. Cycle Pure KitOMEGA BIO-TEKD6492PCR purification kit
GloMax Navigator Microplate LuminometerPromegaGM2010Referred as multimode plate reader luminometer
HiScribe T7 Quick High Yield RNA synthesis KitNew England BiolabsE2050SIn-Vitro transcription kit
Lipofectamine 2000Thermo Fisher Scientific11668019Cationic lipid transfection reagent
NanoDrop2000Thermo Fisher ScientificND-2000Used to measure DNA and RNA concentration
Opti-MEMThermo Fisher Scientific31985070Reduced serum media
Purelink RNA Mini KitThermo Fisher Scientific12183018ARNA purification kit
Vaccinia Capping SystemNew England BiolabsM2080Capping system

References

  1. Crick, F. H. On protein synthesis. Symposia of the Society for Experimental Biology. 12, 138-163 (1958).
  2. Crick, F. Central Dogma of Molecular Biology. Nature. 227, 561-563 (1970).
  3. Sonenberg, N., Hinnebusch, A. G.

Explore More Articles

In Vitro Transcribed RNALuciferase Reporter AssayTranslation RegulationPoxvirus infected CellsPoly A Tail5 UTR3 UTRCap ModificationPCR AmpliconT7 PromoterFirefly LuciferaseRenilla LuciferaseKozak SequenceAgarose Gel Electrophoresis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved