A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
In this study, we present a protocol for cortisol extraction from the fin and jawbone of sturgeon species. Fin and jawbone cortisol levels were further examined by comparing two washing solvents followed by ELISA assays. This study piloted the feasibility of jawbone cortisol as a novel stress indicator.
The aims of this study were to develop a technique for the extraction of cortisol from sturgeon fins using two washing solvents (water and isopropanol) and quantify any differences in fin cortisol levels among three main sturgeon species. Fins were harvested from 19 sacrificed sturgeons including seven beluga (Huso huso), seven Siberian (Acipenser baerii), and five sevruga (A. stellatus). The sturgeons were raised in Iranian farms for 2 years (2017-2018), and cortisol extraction analysis was conducted in South Korea (January-February 2019). Jawbones from five H. huso were also used for cortisol extraction. Data were analyzed using the general linear model (GLM) procedure in the SAS environment. The intra- and inter-assay coefficients of variation were 14.15 and 7.70, respectively. Briefly, the cortisol extraction technique involved washing the samples (300 ± 10 mg) with 3 mL of solvent (ultrapure water and isopropanol) twice, rotation at 80 rpm for 2.5 min, air-drying the washed samples at room temperature (22-28 °C) for 7 days, further drying the samples using a bead beater at 50 Hz for 32 min and grinding them into powder, applying 1.5 mL methanol to the dried powder (75 ± 5 mg), and slow rotation (40 rpm) for 18 h at room temperature with continuous mixing. Following extraction, samples were centrifuged (9,500 x g for 10 min), and 1 mL supernatant was transferred into a new microcentrifuge tube (1.5 mL), incubated at 38 °C to evaporate the methanol, and analyzed via enzyme-linked immunosorbent assay (ELISA). No differences were observed in fin cortisol levels among species or in fin and jawbone cortisol levels between washing solvents. The results of this study demonstrate that the sturgeon jawbone matrix is a promising alternative stress indicator to solid matrices.
Cortisol is a reliable indicator of animal stress. Cortisol extraction provides a valid framework for researchers to monitor stress levels and general patterns in stressors. For example, previous studies have conducted methodological validation of hair cortisol measurements using various methods in humans1,2, monkeys3,4, cattle5, sheep6, and goldfish7,8. In fish species, cortisol measurements in matrices such as scales, skin mucus, feces, and blood9 have been shown to provide information on fish health. When blood sampling is problematic or scales are lacking, alternative matrices for cortisol extraction are needed. In fish, alternative matrices can include the jawbone, a hard tissue similar to the human tooth10.
The development of new matrices and validated techniques to determine fish stress levels is of particular interest to the caviar industry, where sturgeon can experience prolonged exposure to environmental stress factors11. The sex of sturgeon cannot be determined before 2 years of age, and sturgeon do not have scales. Because cortisol gradually accumulates in solid matrices during the growth stage2,7,12, long-term cortisol accumulation data from hard matrices such as fins and jawbones could provide insight into stress levels at different growth stages. In contrast, blood cortisol levels provide a snapshot of stress levels at the time of death and cannot accurately represent stress during long-term rearing conditions13,14. With increasing competition in the caviar market, new approaches to improve stress conditions for the production of healthier eggs among sturgeon species during long-term rearing (8-12 years or longer) are an increasingly important area of research. Due to the high cost of sturgeon, harvested samples are extremely costly ($8,000-15,000 per mature fish depending on species and growth stage), a limiting factor for research projects. However, the development of an appropriate technique for cortisol extraction from sturgeon fins and jawbones could be usefully applied both to fish farming systems and in wild fish to improve the quality and harvest of sturgeon eggs for both consumption and conservation.
As well as providing reliable results6, the selection of an appropriate cortisol extraction technique is of critical importance to ensure that other compounds present in the matrix during sample preparation do not confound the output, which might lead to inconsistent results. It is equally important to determine whether fin and jawbone cortisol levels are influenced by hormone levels in the surrounding water. Heimbürge et al.15 suggested that a number of factors may influence cortisol levels including age, sex, pregnancy, season, color12, and body region from which cortisol is extracted16. However, little information is available on the effects of washing solvents on cortisol extraction in fish body matrices8, and none on these effects in sturgeon, except for sturgeon eggs17.
Although analyzing baseline cortisol levels from the fins and jawbones of sturgeon requires that the fish be euthanized, this approach does not entail the invasive techniques required for blood sampling in live sturgeon. Fin and jawbone samples are easily collected, and extraction from these tissues can be performed rapidly. Similarly, hormone extraction and analysis are straightforward and require little specialized equipment.
In this study, we present a new and easily applied technique for the extraction, washing, and determination of cortisol from fish fins and jawbones, with the aim of determining whether cortisol levels measured from these matrices can be reliably used as stress indicators. The advantages of this technique include an easy and non-invasive8 approach, less data variation, and reliable output1,6,8,17; the technique is applicable to fish species without scales such as sturgeon. The technique requires slaughter of the fish, selection of appropriate washing solvents2,4, proper grinding of samples3,5, professional enzyme-linked immunosorbent assay (ELISA) application5,7, and extensive knowledge of the incorporation of cortisol sources into solid matrices6.
We applied two different washing solvents (ultrapure water and isopropanol) to obtain basal cortisol levels in fins from three sturgeon species: beluga (Huso huso), Siberian (Acipenser baerii), and sevruga (A. stellatus), under standard environmental conditions for each species. Jawbones of H. huso were also used to evaluate stress in sturgeon. This is the first study to measure cortisol levels in sturgeon jawbones. The results of this study will provide comparative cortisol data for sturgeon species in the early growth stage (~1 year) prior to sex determination.
The following experimental procedures and methods were approved by the Animal Welfare and Ethics Authority of Kangwon National University, Chuncheon, Republic of Korea.
1. Fin collection
2. Fin preparation for cortisol extraction
3. Fin cortisol analysis
4. Fin cortisol detection
5.Statistical analysis
The presented fin cortisol extraction technique was developed and confirmed in this study using three sturgeon species. Cortisol levels obtained using ultrapure water and isopropanol as washing solvents were compared (Figure 2). Cortisol from H. huso jawbones was examined to determine whether sturgeon jawbones might be used as an alternative matrix to fins. The effects of washing solvent, sturgeon species, and their interaction are shown in T...
Sturgeon is sometimes called a "living fossil" because it has exhibited few adaptations throughout past millennia. The sturgeon genus Acipenser contains 27 species that produce caviar; however, three species (beluga, baerii, and sevruga) produce most of the global caviar supply. Sturgeon are vulnerable to over-fishing and interference in their natural habitat and are therefore more critically endangered than any other group of species. Sturgeon belong to the oldest group of living vertebrates, which has ...
The authors have no conflicts of interest to disclose.
This work was conducted with the support of the Cooperative Research Program for Agriculture Science & Technology Development (Project title: Livestock productivity change analysis with climate change, Project No. PJ012771), Rural Development Administration, Republic of Korea. Also, this study was supported by a grant (No. PJ01344604) from the Animal Nutrition & Physiology Team, National Institute of Animal Science, RDA, Seoul, Republic of Korea. The authors gratefully acknowledge Persian Gesture CEO Mohammad Hassan Salmanzadeh and his team, who provided fish from the three sturgeon species examined in this study.
Name | Company | Catalog Number | Comments |
Disposal latex surgical gloves | Ansell | 63754090 | |
Platform scale-electronic weighing 100kg | Baskoolnikoo | 101 EM | |
Serological pipette to deliver up to 24 mL | Becton Dickinson Falcon | 35-7550 | |
Micro plate reader with 450 nm and 490 to 492 nm reference filters | BioTek | 8041000 | |
Reagent reservoirs | BrandTech | 703459 | |
Zipper storage plastic bag | Cleanwrap | 30cm x100m | |
Isopropyl alcohol | Daejung chemicals & Metals | 5035-4400 | |
Methyl alcohol | Daejung chemicals & Metals | 5558-4100 | |
Tube rotator- MX-RL-Pro | DLAB Scientific | 824-222217777 | |
Precision pipette to deliver 1.5 and 10 mL | Eppendorf Research Plus | M21518D | |
Precision pipette to deliver 15 and 25 μL | Eppendorf Research Plus | R25623C | |
Weighing paper (107 x 210 mm) | Fisherbrand | 09-898-12B | |
Bead beater, 50/60 Hz 2A | GeneReach Biotechnology Corp | tp0088 | |
Plate rotator with orbit capable of 500 rpm | Hangzhou Miu Instrument | MU-E30-1044 | |
Disposable polypropylene tubes to hold at least 24 mL | Hyundai Micro | H20050 | |
Fume hood | Kwang Dong Industrial | KD 901-22128175 | |
Micro-centrifuge capable of 1500 x g | Labo Gene | 9.900.900.729 | |
Mini vortex mixer | LMS | VTX-3000L | |
Lotte aluminum foil roll | Lotte Aluminum | B0722X5FK5 | |
Digital scale | Mettler Toledo | ME204 | |
Ultrapure water | MDM | MDM-0110 | |
Pipette tips | Neptune Scientific | REF 2100.N | |
Large fish net | Pond H2O | Hoz135 | |
Salivary cortisol kit | Salimetrics | 1-3002-4 | |
Bone cutting forceps | Sankyo | 26-188A | |
Precision multichannel pipette to deliver 50 μL and 200 μL | VITLAB | 18A68756 | |
Towel | Yuhan Kimberly | 1707921546 | |
Tissue paper (107 × 210) | Yuhan Kimberly | 41117 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved