Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

In this study, we present a protocol for cortisol extraction from the fin and jawbone of sturgeon species. Fin and jawbone cortisol levels were further examined by comparing two washing solvents followed by ELISA assays. This study piloted the feasibility of jawbone cortisol as a novel stress indicator.

Abstract

The aims of this study were to develop a technique for the extraction of cortisol from sturgeon fins using two washing solvents (water and isopropanol) and quantify any differences in fin cortisol levels among three main sturgeon species. Fins were harvested from 19 sacrificed sturgeons including seven beluga (Huso huso), seven Siberian (Acipenser baerii), and five sevruga (A. stellatus). The sturgeons were raised in Iranian farms for 2 years (2017-2018), and cortisol extraction analysis was conducted in South Korea (January-February 2019). Jawbones from five H. huso were also used for cortisol extraction. Data were analyzed using the general linear model (GLM) procedure in the SAS environment. The intra- and inter-assay coefficients of variation were 14.15 and 7.70, respectively. Briefly, the cortisol extraction technique involved washing the samples (300 ± 10 mg) with 3 mL of solvent (ultrapure water and isopropanol) twice, rotation at 80 rpm for 2.5 min, air-drying the washed samples at room temperature (22-28 °C) for 7 days, further drying the samples using a bead beater at 50 Hz for 32 min and grinding them into powder, applying 1.5 mL methanol to the dried powder (75 ± 5 mg), and slow rotation (40 rpm) for 18 h at room temperature with continuous mixing. Following extraction, samples were centrifuged (9,500 x g for 10 min), and 1 mL supernatant was transferred into a new microcentrifuge tube (1.5 mL), incubated at 38 °C to evaporate the methanol, and analyzed via enzyme-linked immunosorbent assay (ELISA). No differences were observed in fin cortisol levels among species or in fin and jawbone cortisol levels between washing solvents. The results of this study demonstrate that the sturgeon jawbone matrix is a promising alternative stress indicator to solid matrices.

Introduction

Cortisol is a reliable indicator of animal stress. Cortisol extraction provides a valid framework for researchers to monitor stress levels and general patterns in stressors. For example, previous studies have conducted methodological validation of hair cortisol measurements using various methods in humans1,2, monkeys3,4, cattle5, sheep6, and goldfish7,8. In fish species, cortisol measurements in matrices such as scales, skin mucus, feces, and blood9 have been shown to provide information on fish health. When blood sampling is problematic or scales are lacking, alternative matrices for cortisol extraction are needed. In fish, alternative matrices can include the jawbone, a hard tissue similar to the human tooth10.

The development of new matrices and validated techniques to determine fish stress levels is of particular interest to the caviar industry, where sturgeon can experience prolonged exposure to environmental stress factors11. The sex of sturgeon cannot be determined before 2 years of age, and sturgeon do not have scales. Because cortisol gradually accumulates in solid matrices during the growth stage2,7,12, long-term cortisol accumulation data from hard matrices such as fins and jawbones could provide insight into stress levels at different growth stages. In contrast, blood cortisol levels provide a snapshot of stress levels at the time of death and cannot accurately represent stress during long-term rearing conditions13,14. With increasing competition in the caviar market, new approaches to improve stress conditions for the production of healthier eggs among sturgeon species during long-term rearing (8-12 years or longer) are an increasingly important area of research. Due to the high cost of sturgeon, harvested samples are extremely costly ($8,000-15,000 per mature fish depending on species and growth stage), a limiting factor for research projects. However, the development of an appropriate technique for cortisol extraction from sturgeon fins and jawbones could be usefully applied both to fish farming systems and in wild fish to improve the quality and harvest of sturgeon eggs for both consumption and conservation.

As well as providing reliable results6, the selection of an appropriate cortisol extraction technique is of critical importance to ensure that other compounds present in the matrix during sample preparation do not confound the output, which might lead to inconsistent results. It is equally important to determine whether fin and jawbone cortisol levels are influenced by hormone levels in the surrounding water. Heimbürge et al.15 suggested that a number of factors may influence cortisol levels including age, sex, pregnancy, season, color12, and body region from which cortisol is extracted16. However, little information is available on the effects of washing solvents on cortisol extraction in fish body matrices8, and none on these effects in sturgeon, except for sturgeon eggs17.

Although analyzing baseline cortisol levels from the fins and jawbones of sturgeon requires that the fish be euthanized, this approach does not entail the invasive techniques required for blood sampling in live sturgeon. Fin and jawbone samples are easily collected, and extraction from these tissues can be performed rapidly. Similarly, hormone extraction and analysis are straightforward and require little specialized equipment.

In this study, we present a new and easily applied technique for the extraction, washing, and determination of cortisol from fish fins and jawbones, with the aim of determining whether cortisol levels measured from these matrices can be reliably used as stress indicators. The advantages of this technique include an easy and non-invasive8 approach, less data variation, and reliable output1,6,8,17; the technique is applicable to fish species without scales such as sturgeon. The technique requires slaughter of the fish, selection of appropriate washing solvents2,4, proper grinding of samples3,5, professional enzyme-linked immunosorbent assay (ELISA) application5,7, and extensive knowledge of the incorporation of cortisol sources into solid matrices6.

We applied two different washing solvents (ultrapure water and isopropanol) to obtain basal cortisol levels in fins from three sturgeon species: beluga (Huso huso), Siberian (Acipenser baerii), and sevruga (A. stellatus), under standard environmental conditions for each species. Jawbones of H. huso were also used to evaluate stress in sturgeon. This is the first study to measure cortisol levels in sturgeon jawbones. The results of this study will provide comparative cortisol data for sturgeon species in the early growth stage (~1 year) prior to sex determination.

Protocol

The following experimental procedures and methods were approved by the Animal Welfare and Ethics Authority of Kangwon National University, Chuncheon, Republic of Korea.

1. Fin collection

  1. Capture the sturgeon gently using a net to minimize injury and stress.
  2. Rinse the fish carefully with fresh water and then wipe the body surface with an absorbent towel prior to euthanasia.
  3. Hit the head of the fish using a plastic hammer such that the fish is stunned or loses consciousness. Remove the head using a knife.
  4. Measure the body weight (g) and length (cm).
  5. After euthanasia, collect fin samples by cutting as close as the body as possible using sterilized surgical scissors.
    NOTE: Individual, non-recycled absorbent towels must be used for each fish. Descriptive statistics for the species used in this study were as follows: beluga sturgeon (H. huso): age = 18 ± 2.1 months, body weight = 2,700 ± 300 g, and body length = 55 ± 5 cm; Siberian sturgeon (A. baerii): age = 9.6 ± 2.4 months, body weight = 1,750 ± 250 g, and body length = 45 ± 5 cm; sevruga sturgeon (A. stellatus): age = 14 ± 1.3 months, body weight = 1,000 ± 100 g, and body length = 65 ± 5 cm.

2. Fin preparation for cortisol extraction

  1. Place the fin samples (one sample per tissue: ~3 g) on laboratory weighing paper (107 mm × 210 mm) and dry at room temperature for a few days until dry.
  2. Wrap samples in sheets of aluminum foil, place in labeled plastic bags, and transfer to the laboratory.
  3. Store samples in a refrigerator for further use, including washing, cortisol extraction, drying, and ELISA analysis (Figure 2).

3. Fin cortisol analysis

  1. Calibrate the digital analytical scale (accuracy: 0.0001) and weigh out 300 ± 10 mg samples with weighing paper on the scale pan.
  2. Wash the samples.
    1. Transfer each sample into a 15 L conical polypropylene tube. Add 3 mL of isopropanol to each tube using a 5,000 µL single-channel pipette.
    2. Rotate the tubes at 80 rpm for 2.5 min to wash out cortisol and remove any potential external contamination. Repeat this procedure twice.
    3. Air-dry the washed samples at room temperature (22-28 °C) for 7 days.
    4. Repeat the washing procedure using ultrapure water as the washing agent.
  3. Extract the jawbone from the body tissue using bone-cutting forceps. Apply steps 1.5-3.2.4 to the jawbone samples.
  4. Weigh out (75 ± 5 mg) dried fin or jawbone samples and grind using a bead beater at 50 Hz for 32 min.
    1. Deliver 1.5 mL of methanol into each tube containing powdered fin or jawbone using a 1000 µL pipette. Place the samples on a tube rotator at slow rotation (40 rpm) for 18 h at room temperature to extract cortisol with continuous mixing.
  5. Following cortisol extraction, centrifuge the samples at 9,500 x g for 10 min at room temperature. After centrifugation, collect the top organic layer containing cortisol (1 mL) from each sample and place it into a separate 1.5 mL microcentrifuge tube.
    1. Dry the samples by incubation at 38 °C to evaporate the methanol. Keep the extracted cortisol samples under a fume hood overnight to allow methanol to dissipate.
      NOTE: The cortisol-containing layer is usually yellowish in color.

4. Fin cortisol detection

  1. Thaw the dried fin or jawbone samples at room temperature for 1.5 h prior to using the ELISA kit.
  2. Add 400 µL of phosphate buffer, vortex, and centrifuge at 1,500 x g for 15 min.
  3. Run each sample (25 µL) in duplicate to improve assay accuracy and reliability. Remove any data outside the standard curve as outliers.
  4. Set a microplate reader to 450 nm, then set to µg dL-1 and read the optical density of the plate.
    1. Use the microplate software with a four-parameter non-linear regression curve fit. Convert the cortisol levels of the samples obtained from the software into pg mg-1 using the following equation:
      F = 10,000E (A/B) (C/D),
      where F = the final value of the fin cortisol level in (pg mg-1), E = the volume (mL) of the assay buffer used to reconstitute the dried extract, A = the concentration (µg dL-1) provided by the assay output, B = the weight (mg) of the fin subjected to extraction, C = the volume (mL) of methanol added to the powdered fin, and D = the volume (mL) of methanol recovered from the extract and subsequently dried down3.

5.Statistical analysis

  1. Divide each sample into two sub-samples prior to the washing procedure and then run in duplicate during the ELISA kit assay (2 × 2 = 4 observations per sample) to improve the power of the test and reliability of the results.
  2. Compare the effects of the two washing solvents and their interactions by applying the general linear model (GLM) procedure in the SAS software environment to the measurement data18.
  3. Test differences between means using Tukey's test at a significance level of p < 0.05. Accept 0.05 < p < 0.10 as evidence of a tendency rather than as a significant difference.

Results

The presented fin cortisol extraction technique was developed and confirmed in this study using three sturgeon species. Cortisol levels obtained using ultrapure water and isopropanol as washing solvents were compared (Figure 2). Cortisol from H. huso jawbones was examined to determine whether sturgeon jawbones might be used as an alternative matrix to fins. The effects of washing solvent, sturgeon species, and their interaction are shown in T...

Discussion

Sturgeon is sometimes called a "living fossil" because it has exhibited few adaptations throughout past millennia. The sturgeon genus Acipenser contains 27 species that produce caviar; however, three species (beluga, baerii, and sevruga) produce most of the global caviar supply. Sturgeon are vulnerable to over-fishing and interference in their natural habitat and are therefore more critically endangered than any other group of species. Sturgeon belong to the oldest group of living vertebrates, which has ...

Disclosures

The authors have no conflicts of interest to disclose.

Acknowledgements

This work was conducted with the support of the Cooperative Research Program for Agriculture Science & Technology Development (Project title: Livestock productivity change analysis with climate change, Project No. PJ012771), Rural Development Administration, Republic of Korea. Also, this study was supported by a grant (No. PJ01344604) from the Animal Nutrition & Physiology Team, National Institute of Animal Science, RDA, Seoul, Republic of Korea. The authors gratefully acknowledge Persian Gesture CEO Mohammad Hassan Salmanzadeh and his team, who provided fish from the three sturgeon species examined in this study.

Materials

NameCompanyCatalog NumberComments
Disposal latex surgical glovesAnsell63754090
Platform scale-electronic weighing 100kgBaskoolnikoo101 EM
Serological pipette to deliver up to 24 mLBecton Dickinson Falcon35-7550
Micro plate reader with 450 nm and 490 to 492 nm reference filtersBioTek8041000
Reagent reservoirsBrandTech703459
Zipper storage plastic bag Cleanwrap30cm x100m
Isopropyl alcoholDaejung chemicals & Metals 5035-4400
Methyl alcoholDaejung chemicals & Metals 5558-4100
Tube rotator- MX-RL-ProDLAB Scientific 824-222217777
Precision pipette to deliver 1.5 and 10 mLEppendorf Research PlusM21518D
  Precision pipette to deliver 15 and 25 μLEppendorf Research PlusR25623C
Weighing paper (107 x 210 mm)Fisherbrand09-898-12B
Bead beater, 50/60 Hz 2AGeneReach Biotechnology Corptp0088
Plate rotator with orbit capable of 500 rpmHangzhou Miu Instrument MU-E30-1044
Disposable polypropylene tubes to hold at least 24 mLHyundai Micro H20050
Fume hoodKwang Dong IndustrialKD 901-22128175
Micro-centrifuge capable of 1500 x gLabo Gene 9.900.900.729
Mini vortex mixerLMSVTX-3000L 
Lotte aluminum foil roll Lotte AluminumB0722X5FK5
Digital scaleMettler Toledo  ME204
Ultrapure waterMDMMDM-0110
Pipette tipsNeptune ScientificREF 2100.N
Large fish netPond H2OHoz135 
Salivary cortisol kitSalimetrics1-3002-4
Bone cutting forcepsSankyo26-188A
Precision multichannel pipette to deliver 50 μL and 200 μLVITLAB18A68756
TowelYuhan Kimberly1707921546
Tissue paper (107 × 210)Yuhan Kimberly41117

References

  1. Meyer, J. S., Novak, M. A. Hair cortisol: a novel biomarker of hypothalamic-pituitary- adrenocortical activity. Endocrinology. 153, 4120-4127 (2012).
  2. Ghassemi Nejad, J., et al. A cortisol study: facial hair and nails. Journal of Steroids Hormonal Sciences. 7, 1-5 (2016).
  3. Meyer, J. S., Novak, M. A., Hamel, A., Rosenberg, K. Extraction and analysis of cortisol from human and monkey hair. Journal of Visualized Experiments. (83), e50882 (2014).
  4. Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A., Meyer, J. S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology. 147, 255-261 (2006).
  5. Ghassemi Nejad, J., Ataallahi, M., Park, H. K. Methodological validation of measuring Hanwoo hair cortisol concentration using bead beater and surgical scissors. Journal of Animal Science and Technology. 61, 41-46 (2019).
  6. Ghassemi Nejad, J., et al. Wool cortisol is a better indicator of stress than blood cortisol in ewes exposed to heat stress and water restriction. Animal. 8, 128-132 (2014).
  7. Brossa, A. C. . Cortisol in skin mucus and scales as a measure of fish stress and habitat quality. Ph.D. dissertation. , (2018).
  8. Carbajal, A., et al. Cortisol detection in fish scales by enzyme immunoassay: biochemical and methodological validation. Journal of Applied Ichthyology. 34, 1-4 (2018).
  9. Bertotto, D., et al. Alternative matrices for cortisol measurement in fish. Aquaculture Research. 41, 1261-1267 (2010).
  10. Ghassemi Nejad, J., Jeong, C., Shahsavarani, H., Sung, I. K., Lee, J. Embedded dental cortisol content: a pilot study. Endocrinology & Metabolic Syndrome. 5, 240 (2016).
  11. Pankhurst, N. W. The endocrinology of stress in fish: an environmental perspective. General and Comparative Endocrinology. 170, 265-275 (2011).
  12. Ghassemi Nejad, J., Kim, W. B., Lee, B. H., Sung, K. I. Coat and hair color: hair cortisol and serotonin levels in lactating Holstein cows under heat stress conditions. Animal Science Journal. 88, 190-194 (2017).
  13. Baker, M. R., Gobush, K. S., Vynne, C. H. Review of factors influencing stress hormones in fish and wildlife. Journal of Nature Conservation. 21, 309-318 (2013).
  14. Aerts, J., et al. Scales tell a story on the stress history of fish. PLoS One. 10, e0123411 (2015).
  15. Heimbürge, S., Kanitz, E., Otten, W. The use of hair cortisol for the assessment of stress in animals. General and Comparative Endocrinology. , 10-17 (2019).
  16. Ghassemi Nejad, J., et al. Comparing hair cortisol concentrations from various body sites and serum cortisol in Holstein lactating cows and heifers during thermal comfort zone. Journal of Veterinary Behavior: Clinical and Application Research. 30, 92-95 (2019).
  17. Bussy, U., Wassink, L., Scribner, K. T., Li, W. Determination of cortisol in lake sturgeon (Acipenser fulvescens) eggs by liquid chromatography tandem mass spectrometry. Journal of Chromatography B. 1040, 162-168 (2017).
  18. SAS. 1999. . SAS. User's Guide (Version 8.01 Edition). , (1999).
  19. Barton, B. A. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology. 42, 517-525 (2002).
  20. Ghassemi Nejad, J., et al. Measuring hair and blood cortisol in sheep and dairy cattle using RIA and ELISA assay: a comparison. Biological Rhythm Research. Accepted. , (2019).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Cortisol ExtractionSturgeon FinJawbone MatricesStress IndicatorAnalytical ScaleIsopropanolSample WashingUltra Pure WaterBead BeaterMethanolCentrifugationOrganic Cortisol LayerELISA AnalysisStandard Cortisol SampleEnzyme Conjugate

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved