Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Complex human diseases can be challenging to model in traditional laboratory model systems. Here, we describe a surgical approach to model human muscle disease through the transplantation of human skeletal muscle biopsies into immunodeficient mice.

Abstract

Treatment effects observed in animal studies often fail to be recapitulated in clinical trials. While this problem is multifaceted, one reason for this failure is the use of inadequate laboratory models. It is challenging to model complex human diseases in traditional laboratory organisms, but this issue can be circumvented through the study of human xenografts. The surgical method we describe here allows for the creation of human skeletal muscle xenografts, which can be used to model muscle disease and to carry out preclinical therapeutic testing. Under an Institutional Review Board (IRB)-approved protocol, skeletal muscle specimens are acquired from patients and then transplanted into NOD-Rag1null IL2rĪ³null (NRG) host mice. These mice are ideal hosts for transplantation studies due to their inability to make mature lymphocytes and are thus unable to develop cell-mediated and humoral adaptive immune responses. Host mice are anaesthetized with isoflurane, and the mouse tibialis anterior and extensor digitorum longus muscles are removed. A piece of human muscle is then placed in the empty tibial compartment and sutured to the proximal and distal tendons of the peroneus longus muscle. The xenografted muscle is spontaneously vascularized and innervated by the mouse host, resulting in robustly regenerated human muscle that can serve as a model for preclinical studies.

Introduction

It has been reported that only 13.8% of all drug development programs undergoing clinical trials are successful and lead to approved therapies1. While this success rate is higher than the 10.4% previously reported2, there is still significant room for improvement. One approach to increase the success rate of clinical trials is to improve laboratory models used in preclinical research. The Food and Drug Administration (FDA) requires animal studies to show treatment efficacy and assess toxicity prior to Phase 1 clinical trials. However, there is often limited concordance in treatment outcomes between animal studies and cli....

Protocol

All use of research specimens from human subjects was approved by the Johns Hopkins Institutional Review Board (IRB) to protect the rights and welfare of the participants. All animal experiments were approved by the Johns Hopkins University Institutional Animal Care and Use Committee (IACUC) in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. Male NOD-Rag1null IL2rĪ³null (NRG) host mice (8-12 weeks old) .......

Representative Results

As demonstrated by Yuanfan Zhang et al., this surgical protocol is a straightforward method to produce human skeletal muscle xenografts8. Regenerated xenografts become spontaneously innervated and display functional contractility. In addition, muscle xenografted from FSHD patients recapitulates changes in gene expression observed in FSHD patients8.

In our experience, approximately 7 out of 8 xenografts performed from control patient specimens wil.......

Discussion

Patient-derived xenografts are an innovative way to model muscle disease and carry out preclinical studies. The method described here to create skeletal muscle xenografts is rapid, straightforward, and reproducible. Unilateral surgeries can be performed in 15 to 25 minutes, or bilaterally in 30 to 40 minutes. Bilateral xenografts can provide additional experimental flexibility. For instance, researchers can perform localized treatment of one xenograft, with the other left as a control. The NRG mice are resistant to surgi.......

Acknowledgements

This work was supported by The Myositis Association and the Peter Buck Foundation. We would like to thank Dr. Yuanfan Zhang for sharing her expertise and training in the xenograft surgical technique.

....

Materials

NameCompanyCatalog NumberComments
100 mm x 15 mm Petri dishFisher ScientificFB0875712
2-MethylbutaneFisherO3551-4
20 x 30 mm micro cover glassVWR48393-151
Animal Weighing ScaleKent ScientificSCL- 1015
Antibiotic-Antimycotic SolutionCorning, Cellgro30-004-CI
AutoClip SystemF.S.T12020-00
Castroviejo Needle HolderF.S.T12565-14
Chick embryo extractAccurateCE650TL
CM1860 UV cryostatLeica BiosystemsCM1860UV
Coplin staining jarThermo Scientific19-4
Dissection PinsFisher ScientificS13976
Dry Ice - pelletFisher ScientificNC9584462
Embryonic Myosin antibodyDSHBF1.652recommended concentration 1:10
EthanolFisher Scientific459836
Fetal Bovine SerumGE Healthcare Life SciencesSH30071.01
Fiber-Lite MI-150Dolan-JennerMi-150
ForcepsF.S.T11295-20
Goat anti-mouse IgG1, Alexa Fluor 488InvitrogenA-21121recommended concentration 1:500
Goat anti-mouse IgG2b, AlexaFluor 594InvitrogenA-21145recommended concentration 1:500
Gum tragacanthSigmaG1128
Hams F-10 MediumCorning10-070-CV
Histoacryl Blue Topical Skin AdhesiveTissue sealTS1050044FP
Human specific lamin A/C antibodyAbcamab40567recommended concentration 1:50-1:100
Human specific spectrin antibodyLeica BiosystemsNCLSPEC1recommended concentration 1:20-1:100
Induction ChamberVetEquip941444
Iris ForcepsF.S.T11066-07
Irradiated Global 2018 (Uniprim 4100 ppm)EnvigoTD.06596Antibiotic rodent diet to protect again respiratory infections
IsofluraneMWI Veterinary Supply502017
KimwipesKimberly-Clark34155surgical wipes
Mapleson E Breathing CircuitVetEquip921412
MethanolFisher ScientificA412
Mobile Anesthesia MachineVetEquip901805
Mouse on Mouse Basic KitVector LaboratoriesBMK-2202mouse IgG blocking reagent
Nail PolishElectron Microscopy Sciences72180
NAIR Hair remover lotion/oilFisher ScientificNC0132811
NOD-Rag1null IL2rg null (NRG) miceThe Jackson Laboratory0077992 to 3 months old
O.C.T. CompoundFisher Scientific23-730-571
OxygenAirgasOX USPEA
PBS (phosphate buffered saline) bufferFisher Scientific4870500
Povidone Iodine Prep SolutionDynarex1415
ProLongā„¢ Gold Antifade MountantFisher ScientificP10144 (no DAPI); P36935 (with DAPI)
Puralube Ophthalmic OintmentDechra17033-211-38
Rimadyl (carprofen) injectablePatterson Veterinary10000319surgical analgesic, administered subcutaneously at a dose of 5mg/kg
Scalpel Blades - #11F.S.T10011-00
Scalpel Handle - #3F.S.T10003-12
Stereo MicroscopeAccu-scope3075
Superfrost Plus Microscope SlidesFisher Scientific12-550-15
Suture, Synthetic, Non-Absorbable, 30 inches long, CV-11 needleCovidienVP-706-X
1ml Syringe (26 gauge, 3/8 inch needle)BD Biosciences329412
TrimmerKent ScientificCL9990-KIT
Vannas Spring Scissors, 8.0 mm cutting edgeF.S.T15009-08
VaporGaurd Activated Charcoal FilterVetEquip931401
Wound clips, 9 mmF.S.T12022-09

References

  1. Wong, C. H., Siah, K. W., Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics. , 1-14 (2018).
  2. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., Rosenthal, J. Clinical development success....

Explore More Articles

Human Skeletal Muscle XenograftsImmunodeficient MiceMuscle Disease ModelingPreclinical Therapeutic TestingHuman Muscle Cell BiologyRare Or Acquired Muscle DiseasesMuscle BiopsyNOD Rag gamma MouseTibialis AnteriorExtensor Digitorum LongusPeroneus LongusSurgical ProcedureTissue Grafting

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright Ā© 2024 MyJoVE Corporation. All rights reserved