Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a surgical protocol in rabbits with the aim to assess bone substitution materials in terms of bone regeneration capacities. By using PEEK cylinders fixed onto rabbit skulls, osteoconduction, osteoinduction, osteogenesis and vasculogenesis induced by the materials may be evaluated either on live or euthanized animals.

Abstract

The basic principle of the rabbit calvarial model is to grow new bone tissue vertically on top of the cortical part of the skull. This model allows assessment of bone substitution materials for oral and craniofacial bone regeneration in terms of bone growth and neovascularization support. Once animals are anesthetized and ventilated (endotracheal intubation), four cylinders made of polyether ether ketone (PEEK) are screwed onto the skull, on both sides of the median and coronal sutures. Five intramedullary holes are drilled within the bone area delimited by each cylinder, allowing influx of bone marrow cells. The material samples are placed into the cylinders which are then closed. Finally, the surgical site is sutured, and animals are awaken. Bone growth may be assessed on live animals by using microtomography. Once animals are euthanized, bone growth and neovascularization may be evaluated by using microtomography, immune-histology and immunofluorescence. As the evaluation of a material requires maximum standardization and calibration, the calvarial model appears ideal. Access is very easy, calibration and standardization are facilitated by the use of defined cylinders and four samples may be assessed simultaneously. Furthermore, live tomography may be used and ultimately a large decrease in animals to be euthanized may be anticipated.

Introduction

The calvarial model of bone augmentation was developed in the 90’s with the aim to optimize the concept of guided bone regeneration (GBR) in the oral and craniofacial surgical domain. The basic principle of this model is to grow new bone tissue vertically on top of the cortical part of the skull. To do so, a reactor (e.g., titanium -dome, -cylinder or -cage) is fixed onto the skull to protect the bone regeneration conducted by a graft (e.g., hydrogel, bone substitute, etc.). With the aid of this model, titanium or ceramic cages1,2,3,4<....

Protocol

In line with Swiss legal requirements, the protocol was approved by an academic committee and supervised by the cantonal and federal veterinary agencies (authorizations n° GE/165/16 and GE/100/18).

1. Specific devices and animals

  1. Cylinders
    1. Machine cylinders with lateral stabilizing tabs out of PEEK to have inner diameter of 5 mm, outer diameter of 8 mm and a height of 5 mm (Figure 1).
    2. Machine PEEK caps with .......

Representative Results

The model described herein is dedicated to the assessment of osteoconduction in bone substitutes. Osteogenesis and-or osteoinduction of bone substitutes either (pre-)cellularized or loaded with bioactive molecules may be also assessed, as well as vasculogenesis1,2,3,4,5,6,

Discussion

The model described herein is simple and should be developed quite easily as long as all the steps are followed and the equipment is suitable. As the protocol described is a surgical method, all the steps appear critical and must be followed properly. It is critical to be trained for animal experiments, especially in rabbit handling and anesthesia. Do not hesitate to ask for professional anesthetist and veterinary help. It is critical to insist on the daily visual monitoring of animals before and after suture removal. Ev.......

Acknowledgements

The authors are indebted to Geistlich AG (Wolhusen, CH) and the Osteology foundation (Lucerne, CH) (grant n°18-049) for their support, as well as Global D (Brignais, FR) for providing the screws. A particular thanks goes to Dr B. Schaefer from Geistlich. We are also grateful to Eliane Dubois and Claire Herrmann for their excellent histological processing and their precious advices. Finally, we warmly acknowledge Xavier Belin, Sylvie Roulet and the entire team of Pr Walid Habre, “experimental surgery Dpt” ,for their remarkable technical assistance.

....

Materials

NameCompanyCatalog NumberComments
Drugs
Enrofloxacine Baytril 10%BayerAntibiotic
FentanylBischelFor analgesia
Ketalar 50mg/mlPfizerKetamine for anesthesia
LidohexBichselLubricating gel for the eyes
OpsiteSmith and Nephew66004978Sprayable dressing
Povidone iodine 10%, BetadineMundipharmaanti-infective agent
Propofol 2%Braun3538710For anesthesia
Rapidocain 2%sinteticaLocal anesthesia
Ringer-acetateFresenius KabiVolume compensation
Rompun 2%BayerXylazin for anesthesia
Sevoflurane 5%AbbvieFor anesthesia
Sterile salineSintetica
TemgesicReckitt BenckiserBuprenorphine hydrochloride, analgesia
Thiopental InresaOspedialaFor anesthesia
Xylocaine 10% sprayAstra ZenecaFor intubation
NameCompanyCatalog NumberComments
Equipment
Fresenius Vial pilot CImexmedInfusion pump
Heated padHarvard Apparatus
Suction dominant 50Medela
Suction tubing OptimusPromedical80342.2
Surgical motorSchick dentalQubeDrilling of intramedullary holes
VentilationMaquet Servo1
NameCompanyCatalog NumberComments
Material
Cylinders and capsBoutyplastCustomizedcomposition: PEEK (poly ether ether ketone)
Manual self-retaining shaftGlobalDACT1K
Mobile handle for self-retaining shaftGlobalDMTM
Self- drilling screwsGlobalDVA1.2KL4cross-drive screws composed by Titanium grade5, ISO 5832-3
NameCompanyCatalog NumberComments
Surgical tray
Endotracheal tube Shiley diameter 2,5mmCovidien86233For intubation
Endotracheal tube Shiley diameter 4,9mmCovidien107-35GFor intubation
Ethicon prolene 4-0Ehticon8581HNon-resorbable suture
ForcepsMarcel BlancBD027R145 mm
Intubation catheterCook medicalGuide for intubation
Needlle holderMarcel BlancBM008R
Needles BD Microlance3Becton Dickinson300300/30462226G; 18G
PeriostealHU-FriedyP9X
Round surgical bursPatterson780000.8 mm in diameter, Drilling of intramedullary holes
ScalpelSwann-Mortonn°10 and n°15
ScissorsMarcel Blanc00657180 mm
Syringes OmnifixBraun4616057V5ml, 10ml and 50ml
Venflon G22Braun42690985-01Vasofix safety for the ear iv line

References

  1. Anderud, J., et al. Guided bone augmentation using a ceramic space-maintaining device. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 118 (5), 532-538 (2014).
  2. Lundgren, A. K., Lundgren, D., Hammerle, C. H., Nyman, S., Sennerby, L.

Explore More Articles

Rabbit Calvarial ModelBone AugmentationBone Substitution MaterialsBone RegenerationEctopic Bone GrowthOsteoconductionOsteoinductionOsteogenesisNeovascularizationSurgical ProtocolAnesthesiaEndotracheal IntubationAnimal Study

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved