Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Cancer is a lethal disease due to its ability to metastasize to different organs. Determining the ability of cancer cells to migrate and invade under various treatment conditions is crucial to assessing therapeutic strategies. This protocol presents a method to assess the real-time metastatic abilities of a glioblastoma cancer cell line. 

Abstract

Cancer arises due to uncontrolled proliferation of cells initiated by genetic instability, mutations, and environmental and other stress factors. These acquired abnormalities in complex, multilayered molecular signaling networks induce aberrant cell proliferation and survival, extracellular matrix degradation, and metastasis to distant organs. Approximately 90% of cancer-related deaths are estimated to be caused by the direct or indirect effects of metastatic dissemination. Therefore, it is important to establish a highly reliable, comprehensive system to characterize cancer cell behaviors upon genetic and environmental manipulations. Such a system can give a clear understanding of the molecular regulation of cancer metastasis and the opportunity for successful development of stratified, precise therapeutic strategies. Hence, accurate determination of cancer cell behaviors such as migration and invasion with gain or loss of function of gene(s) allows assessment of the aggressive nature of cancer cells. The real-time measurement system based on cell impedance enables researchers to continually acquire data during a whole experiment and instantly compare and quantify the results under various experimental conditions. Unlike conventional methods, this method does not require fixation, staining, and sample processing to analyze cells that migrate or invade. This method paper emphasizes detailed procedures for real-time determination of migration and invasion of glioblastoma cancer cells.

Introduction

Cancer is a lethal disease due to its ability to metastasize to different organs. Determining cancer genotypes and phenotypes is critical to understanding and designing effective therapeutic strategies. Decades of cancer research have led to the development and adaptation of different methods to determine cancer genotypes and phenotypes. One of the latest technical developments is real-time measurement of cell migration and invasion based on cell impedance. Cell adhesion to substrates and cell-cell contacts play an important role in cell-to-cell communication and regulation, development, and maintenance of tissues. Abnormalities in cell adhesion lead to the loss of ce....

Protocol

NOTE: All cell culture materials need to be sterile and the entire experiment must be performed in a biosafety cabinet under sterile conditions.

1. Culture and Electroporation of the U-118MG Glioblastoma Cell Line

  1. Culture the U-118MG cell line in 5% fetal bovine serum (FBS) containing Dulbecco’s Modified Eagle Medium (DMEM) (culture medium) and Maintain at 37 °C in a humid atmosphere containing 5% CO2 incubator (culture conditions).
  2. .......

Representative Results

It has been suggested that Crk and CrkL are important for cell migration and invasion in different cancer cell lines13,17. Although Crk and CrkL proteins are structurally and functionally similar to each other and play essential overlapping functions16,19,20,21, many gene knockdown studies for Crk and CrkL have not clearly addressed whe.......

Discussion

The real-time measurement of cell migration and invasion using the real-time cell analysis system is a simple, quick, and continuous monitoring process with multiple, significant advantages over the traditional methods that provide data at a single time point. As with the traditional methods, experimental conditions must be optimized for each cell line for the real-time cell analysis system, because each cell line may be different in terms of its adhesion to the substrate, growth, cell-to-cell contacts, and migratory and.......

Acknowledgements

We thank Olivia Funk for her technical assistance with the real-time cell analysis system data. We also thank the Medical Writing Center at Children’s Mercy Kansas City for editing this manuscript. This work was supported by Tom Keaveny Endowed Fund for Pediatric Cancer Research (to TP) and by Children’s Mercy Hospital Midwest Cancer Alliance Partner Advisory Board funding (to TP).

....

Materials

NameCompanyCatalog NumberComments
Biosafety cabinetThermoFisher Scientific1300 Series Class II, Type A2
CIM platesCell Analysis Division of Agilent Technologies, Inc5665825001Cell invasion and migration plates
Crk siRNADharmaconJ-010503-10
CrkL siRNAAmbionID: 3522 and ID: 3524
Dulbecco’s modified eagle’s medium (DMEM)ATCC302002Culture medium used for cell culture
Dulbecco's phosphate-buffered saline (DPBS)Gibco21-031-CVDPBS used to wash the cells
Fetal bovine serum (FBS)HycloneSH30910.03
Heracell VIOS 160i CO2 incubatorThermoFisher Scientific51030285Co2 incubator
MatrigelBD Bioscience354234Extracellular matrix gel
Neon electroporation systemThermoFisher ScientificMPK5000Electroporation system
Neon transfection system 10 µL kitThermoFisher ScientificMPK1025Electroporation kit
Non-targeting siRNADharmaconD-001810-01siRNA for non targated control
Odyssey CLx (Imaging system)LI-COR BiosciencesWestern blot imaging system
RTCA softwareCell Analysis Division of Agilent Technologies, IncInstrument used for experiment
ScepterMilliporeC85360Handheld automated cell counter
Trypsin-EDTAGibco25300-054
U-118MGATCCATCC HTB15Cell lines used for experiments
xCELLigence RTCA DPCell Analysis Division of Agilent Technologies, Inc380601050Instrument used for experiment

References

  1. Park, T., Koptyra, M., Curran, T. Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). Journal of Biological Chemistry. 291 (51), 26273-26290 (2016).
  2. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next....

Explore More Articles

Real time MeasurementCancer Cell MigrationCancer Cell InvasionImpedance basedU 118MG Cell LineTrypsin EDTACell CentrifugationElectroporationSiRNAReal time Cell AnalysisExtracellular Matrix GelCell Invasion AssayLow Serum MediumImpedance Measurement

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved