JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Neuroscience

Induction of Complete Transection-Type Spinal Cord Injury in Mice

Published: May 6th, 2020

DOI:

10.3791/61131

1Griffith Institute for Drug Discovery, Griffith University, 2Menzies Health Institute Queensland, Griffith University, 3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University

* These authors contributed equally

Abstract

Spinal cord injury (SCI) largely leads to irreversible and permanent loss of function, most commonly as a result of trauma. Several treatment options, such as cell transplantation methods, are being researched to overcome the debilitating disabilities arising from SCI. Most pre-clinical animal trials are conducted in rodent models of SCI. While rat models of SCI have been widely used, mouse models have received less attention, even though mouse models can have significant advantages over rat models. The small size of mice equates to lower animal maintenance costs than for rats, and the availability of numerous transgenic mouse models is advantageous for many types of studies. Inducing repeatable and precise injury in the animals is the primary challenge for SCI research, which in small rodents requires high-precision surgery. The transection-type injury model has been a commonly used injury model over the last decade for transplantation-based therapeutic research, however a standardized method for inducing a complete transection-type injury in mice does not exist. We have developed a surgical protocol for inducing a complete transection type injury in C57BL/6 mice at thoracic vertebral level 10 (T10). The procedure uses a small tip drill instead of rongeurs to precisely remove the lamina, after which a thin blade with rounded cutting edge is used to induce the spinal cord transection. This method leads to reproducible transection-type injury in small rodents with minimal collateral muscle and bone damage and therefore minimizes confounding factors, specifically where behavioral functional outcomes are analyzed.

Explore More Videos

Keywords Spinal Cord Injury

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved