A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes a dynamic culture system to produce controlled size aggregates of human pluripotent stem cells and further stimulate differentiation in cerebellar organoids under chemically-defined and feeder-free conditions using a single-use bioreactor.
The cerebellum plays a critical role in the maintenance of balance and motor coordination, and a functional defect in different cerebellar neurons can trigger cerebellar dysfunction. Most of the current knowledge about disease-related neuronal phenotypes is based on postmortem tissues, which makes understanding of disease progression and development difficult. Animal models and immortalized cell lines have also been used as models for neurodegenerative disorders. However, they do not fully recapitulate human disease. Human induced pluripotent stem cells (iPSCs) have great potential for disease modeling and provide a valuable source for regenerative approaches. In recent years, the generation of cerebral organoids from patient-derived iPSCs improved the prospects for neurodegenerative disease modeling. However, protocols that produce large numbers of organoids and a high yield of mature neurons in 3D culture systems are lacking. The protocol presented is a new approach for reproducible and scalable generation of human iPSC-derived organoids under chemically-defined conditions using scalable single-use bioreactors, in which organoids acquire cerebellar identity. The generated organoids are characterized by the expression of specific markers at both mRNA and protein level. The analysis of specific groups of proteins allows the detection of different cerebellar cell populations, whose localization is important for the evaluation of organoid structure. Organoid cryosectioning and further immunostaining of organoid slices are used to evaluate the presence of specific cerebellar cell populations and their spatial organization.
The emergence of human pluripotent stem cells (PSCs) represents a excellent tool for regenerative medicine and disease modeling, because these cells can be differentiated into most cell lineages of the human body1,2. Since their discovery, PSC differentiation using diverse approaches has been reported to model different diseases, including neurodegenerative disorders3,4,5,6.
Recently, there have been reports of 3D cultures derived from PSCs resembling human cerebral structures; these are called brain organoids3,7,8. The generation of these structures from both healthy and patient-specific PSCs provides a valuable opportunity to model human development and neurodevelopmental disorders. However, the methods used to generate these well-organized cerebral structures are difficult to apply for their large-scale production. To produce structures that are large enough to recapitulate tissue morphogenesis without necrosis inside the organoids, protocols rely on the initial neural commitment in static conditions, followed by encapsulation in hydrogels and subsequent culture in dynamic systems3. However, such approaches may limit the potential scale-up of organoid production. Even though efforts have been made to direct PSC differentiation to specific regions of the central nervous system, including cortical, striatal, midbrain, and spinal cord neurons9,10,11,12, the generation of specific brain regions in dynamic conditions is still a challenge. In particular, the generation of mature cerebellar neurons in 3D structures has yet to be described. Muguruma et al. pioneered the generation of culture conditions that recapitulate early cerebellar development13 and recently reported a protocol that allows for human embryonic stem cells to generate a polarized structure reminiscent of the first trimester cerebellum7. However, the maturation of cerebellar neurons in the reported studies requires the dissociation of the organoids, sorting of cerebellar progenitors, and coculture with feeder cells in a monolayer culture system7,14,15,16. Therefore, the reproducible generation of the desired cerebellar organoids for disease modeling under defined conditions is still a challenge associated with culture and feeder source variability.
This protocol presents optimal culture conditions for 3D expansion and efficient differentiation of human PSCs into cerebellar neurons using single-use vertical wheel bioreactors (see Table of Materials for specifications), hereafter called bioreactors. Bioreactors are equipped with a large vertical impeller, which in combination with a U-shaped bottom, provide a more homogeneous shear distribution inside the vessel, allowing gentle, uniform mixing and particle suspension with reduced agitation speeds17. With this system, shape and size-controlled cell aggregates can be obtained, which is important for a more homogeneous and efficient differentiation. Moreover, a larger number of iPSC-derived organoids can be generated in a less laborious manner.
The main feature of the organoids, which are 3D multicellular structures usually formed from stem cells, is the self-organization of different cell types that forms specific shapes like those seen in human morphogenesis18,19,20. Therefore, organoid morphology is an important criterion to be evaluated during the differentiation process. Cryosectioning of organoids and further immunostaining of organoid slices with a specific set of antibodies allow for the spatial visualization of molecular markers to analyze cell proliferation, differentiation, cell population identity, and apoptosis. With this protocol, by immunostaining organoid cryosections, an initial efficient neural commitment is observed by the 7th day of differentiation. During differentiation, several cell populations with cerebellar identity are observed. After 35 days in this dynamic system, the cerebellar neuroepithelium organizes along an apicobasal axis, with an apical layer of proliferating progenitors and basally located postmitotic neurons. During the maturation process, from days 35–90 of differentiation, distinct types of cerebellar neurons can be seen, including Purkinje cells (Calbindin+), granule cells (PAX6+/MAP2+), Golgi cells (Neurogranin+), unipolar brush cells (TBR2+), and deep cerebellar nuclei projection neurons (TBR1+). Also, a nonsignificant amount of cell death is observed in the generated cerebellar organoids after 90 days in culture.
In this system, human iPSC-derived organoids mature into different cerebellar neurons and survive for up to 3 months without the need for dissociation and feeder coculture, providing a source of human cerebellar neurons for disease modeling.
Access restricted. Please log in or start a trial to view this content.
1. Passaging and maintenance of human iPSCs in monolayer culture
2. Seeding of human iPSCs in the bioreactor
3. Differentiation and maturation of human iPSC-derived aggregates in cerebellar organoids
4. Preparation of organoids for cryosectioning and immunohistochemistry
Access restricted. Please log in or start a trial to view this content.
The protocol was initiated by promoting cell aggregation using the 0.1 L bioreactors (Figure 1A). Single cell inoculation of the iPSCs was performed, with 250,000 cells/mL seeded in 60 mL of medium with an agitation speed of 27 rpm. This was defined as day 0. After 24 h, the cells efficiently formed spheroid-shaped aggregates (day 1, Figure 1B), and the morphology was well-maintained until day 5, with a gradual increase in size, demonstrating a high degree of ho...
Access restricted. Please log in or start a trial to view this content.
The need for large cell numbers as well as defined culture conditions to generate specific cell types for drug screening and regenerative medicine applications has been driving the development of scalable culture systems. In recent years, several groups have reported the scalable generation of neural progenitors and functional neurons32,33,34, providing significant advances in the development of new models for neurodegenerative ...
Access restricted. Please log in or start a trial to view this content.
Authors YH and SJ are employees of PBS Biotech. The author BL is CEO and co-founder of PBS Biotech, Inc. These collaborating authors participated in the development of the bioreactors used in the manuscript. This does not alter the authors’ adherence to all the policies of the journal on sharing data and materials. All other authors declare no conflict of interest.
This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal (UIDB/04565/2020 through Programa Operacional Regional de Lisboa 2020, Project N. 007317, PD/BD/105773/2014 to T.P.S and PD/BD/128376/2017 to D.E.S.N.), projects co-funded by FEDER (POR Lisboa 2020—Programa Operacional Regional de Lisboa PORTUGAL 2020) and FCT through grant PAC-PRECISE LISBOA-01-0145-FEDER-016394 and CEREBEX Generation of Cerebellar Organoids for Ataxia Research grant LISBOA-01-0145-FEDER-029298. Funding was also received from the European Union's Horizon 2020 Research and Innovation Programme, under the Grant Agreement number 739572—The Discoveries Centre for Regenerative and Precision Medicine H2020-WIDESPREAD-01-2016-2017.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3MM paper | WHA3030861 | Merck | |
Accutase | A6964 - 500mL | Sigma | cell detachment medium |
Anti-BARHL1 Antibody | HPA004809 | Atlas Antibodies | |
Anti-Calbindin D-28k Antibody | CB28 | Millipore | |
Anti-MAP2 Antibody | M4403 | Sigma | |
Anti-N-Cadherin Antibody | 610921 | BD Transduction | |
Anti-NESTIN Antibody | MAB1259-SP | R&D | |
Anti-OLIG2 Antibody | MABN50 | Millipore | |
Anti-PAX6 Antibody | PRB-278P | Covance | |
Anti-SOX2 Antibody | MAB2018 | R&D | |
Anti-TBR1 Antibody | AB2261 | Millipore | |
Anti-TBR2 Antibody | ab183991 | Abcam | |
Anti-TUJ1 Antibody | 801213 | Biolegend | |
Apo-transferrin | T1147 | Sigma | |
BrainPhys Neuronal Medium N2-A & SM1 Kit | 5793 - 500mL | Stem cell tecnhnologies | |
Chemically defined lipid concentrate | 11905031 | ThermoFisher | |
Coverslips 24x60mm | 631-1575 | VWR | |
Crystallization-purified BSA | 5470 | Sigma | |
DAPI | 10236276001 | Sigma | |
Dibutyryl cAMP | SC- 201567B -500mg | Frilabo | |
DMEM-F12 | 32500-035 | ThermoFisher | |
Fetal bovine serum | A3840001 | ThermoFisher | |
Gelatin from bovine skin | G9391 | Sigma | |
Glass Copling Jar | E94 | ThermoFisher | |
Glutamax I | 10566-016 | ThermoFisher | |
Glycine | MB014001 | NZYtech | |
Ham’s F12 | 21765029 | ThermoFisher | |
Human Episomal iPSC Line | A18945 | ThermoFisher | iPSC6.2 |
IMDM | 12440046 | ThermoFisher | |
Insulin | 91077C | Sigma | |
iPS DF6-9-9T.B | WiCell | ||
Iso-pentane | PHR1661-2ML | Sigma | |
L-Ascorbic acid | A-92902 | Sigma | |
Matrigel | 354230 | Corning | basement membrane matrix |
Monothioglycerol | M6154 | Sigma | |
Mowiol | 475904 | Millipore | mounting medium |
mTeSR1 | 85850 -500ml | Stem cell technologies | |
N2 supplement | 17502048 | ThermoFisher | |
Neurobasal | 12348017 | ThermoFisher | |
Paraformaldehyde | 158127 | Sigma | |
PBS-0.1 Single-Use Vessel | SKU: IA-0.1-D-001 | PBS Biotech | |
PBS-MINI MagDrive Base Unit | SKU: IA-UNI-B-501 | PBS Biotech | |
Recombinant human BDNF | 450-02 | Peprotech | |
Recombinant human bFGF/FGF2 | 100-18B | Peprotech | |
Recombinant human FGF19 | 100-32 | Peprotech | |
Recombinant human GDNF | 450-10 | Peprotech | |
Recombinant human SDF1 | 300-28A | Peprotech | |
ROCK inhibitor Y-27632 | 72302 | Stem cell technologies | |
SB431542 | S4317 | Sigma | |
Sucrose | S7903 | Sigma | |
SuperFrost Microscope slides | 12372098 | ThermoFisher | adhesion microscope slides |
Tissue-Tek O.C.T. Compound | 25608-930 | VWR | |
Tris-HCL 1M | T3038-1L | Sigma | |
Triton X-100 | 9002-93-1 | Sigma | |
Tween-20 | P1379 | Sigma | |
UltraPure 0.5M EDTA, pH 8.0 | 15575020 | ThermoFisher |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved