Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol generates mesh-shaped engineered cardiac tissues containing cardiovascular cells derived from human induced pluripotent stem cells to allow the investigation of cell implantation therapy for heart diseases.

Abstract

The current protocol describes methods to generate scalable, mesh-shaped engineered cardiac tissues (ECTs) composed of cardiovascular cells derived from human induced pluripotent stem cells (hiPSCs), which are developed towards the goal of clinical use. HiPSC-derived cardiomyocytes, endothelial cells, and vascular mural cells are mixed with gel matrix and then poured into a polydimethylsiloxane (PDMS) tissue mold with rectangular internal staggered posts. By culture day 14 ECTs mature into a 1.5 cm x 1.5 cm mesh structure with 0.5 mm diameter myofiber bundles. Cardiomyocytes align to the long-axis of each bundle and spontaneously beat synchronously. This approach can be scaled up to a larger (3.0 cm x 3.0 cm) mesh ECT while preserving construct maturation and function. Thus, mesh-shaped ECTs generated from hiPSC-derived cardiac cells may be feasible for cardiac regeneration paradigms.

Introduction

Numerous preclinical studies and clinical trials have confirmed the efficiency of cell-based cardiac regenerative therapies for failing hearts1,2,3. Among various cell types, human induced pluripotent stem cells (hiPSCs) are promising cell sources by virtue of their proliferative ability, potential to generate various cardiovascular lineages4,5, and allogenicity. In addition, tissue engineering technologies have made it possible to transfer millions of cells onto a damaged heart5,

Protocol

1. Maintenance of hiPSCs and cardiovascular differentiation

  1. Expand and maintain hiPSCs on thin-coat basement membrane matrix (growth factor reduced, 1:60 dilution) in conditioned medium extracted from mouse embryonic fibroblasts (MEF-CM) with human basic fibroblast growth factor (hbFGF)4.
    NOTE: We used a hiPSCs (4-factor (Oct3/4, Sox2, Klf4 and c-Myc) line: 201B6). Add hbFGF at the appropriate concentration for each cell line. Laminin-511 fragment can also be used for the coatin.......

Representative Results

Figure 1A,B shows the schematics of CM+EC and MC protocol. After inducing CMs and ECs from CM+EC protocol and MCs from MC protocol, the cells are mixed adjusting final MC concentrations to represent 10 to 20% of total cells. The 2 cm wide tissue mold is fabricated according to the design drawing from 0.5 mm thick PDMS sheet (Figure 2A,B). Six million of CM+EC+MC cells are combined with collagen I, and matrix and poured onto.......

Discussion

Following the completion of our investigation of a linear format, hiPSC derived ECT5, we adapted the protocol to mix hiPSC-derived CMs, ECs, and MCs to facilitate the in vitro expansion of vascular cells within ECTs and subsequent in vivo vascular coupling between ECTs and recipient myocardium.

To facilitate the generation of larger, implantable mesh ECT geometries we used thin PDMS sheets to design the 3D molds with loading posts arrayed at staggered positions. During .......

Acknowledgements

This work was financially supported by the Kosair Charities Pediatric Heart Research Program at the University of Louisville and the Organoid Project at the RIKEN Center for Biosystems Dynamics Research. HiPSCs used in our published protocols were provided by the Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.

....

Materials

NameCompanyCatalog NumberComments
Materials
Cell Culture Dishes 100x20 mm styleFalcon/ Thomas scientific9380C51
Multiwell Plates For Cell Culture 6well 50/CSFalcon / Thomas scientific6902A01
Sylgard 184 Silicone Elastomer KitDow Corning761036
Reagents
AccumaxInnovative Cell TechnologiesAM-105
BMP4, recombinant (10µg)R&DRSD-314-BP-010
Collagen, Type I solution from rat tailSigmaC3867
Growth factor-reduced MatrigelCorning356231
Human VEGF (165) IS, premium gradeMiltenyi130-109-385
Pluronic F-127, 0.2 µm filtered (10% Solution in Water)Molecular ProbesP-6866
Recombinant human bFGFWAKO060-04543
Recombinant Human/Mouse/Rat ActivinA (50µg)R&D338-AC-050
rh Wnt-3a (10µg)R&D5036-WN
Versene solutionGibco15040066
Culture medium and supplements
10x MEMInvitrogen11430
2 Mercaptro EthanolSIGMAM6250
B27 supplement minus insulinGibcoA1895601
DMEM, high glucoseGibco11965084
Fetal Bovine Serum (500ml)Any
Fetal Bovine Serum (500ml)Any
L-GlutamineGibco25030081
NaHCO3Any
PBS 1xGibco10010-031
Penicillin-Streptomycin (5000 U/mL)Gibco15070-063
RPMI1640 mediumGibco21870092
αMEMInvitrogen11900024
Flowcytometry
anti-TRA-1-60, FITC, Clone: TRA-1-60, BD BiosciencesBD / Fisher560380
anti-Troponin T, Cardiac Isoform Ab-1, Clone: 13-11, Thermo Scientific Lab VisionFisherMS-295-P0
BD FACS Clean SolutionBD340345
BD FACSFlow Sheath FluidBD342003
BD FACSRinse SolutionBD340346
EDTAAny
Falcon Tube with Cell Strainer Cap (Case of 500)Corning352235
Fetal Bovine Serum (500ml)Any
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit, for 405 nm excitationMolecular ProbesL34957
PDGFRb; anti-CD140b, R-PE, Clone: 28D4, BD BiosciencesBD / Fisher558821
SaponinSigma-Aldrich47306-50G-F
VEcad-FITC; anti-CD144, FITC, Clone: 55-7H1, BD BiosciencesBD / Fisher560411
Zenon Alexa Fluor 488 Mouse IgG1 Labeling KitMolecular ProbesZ25002

References

  1. Sanganalmath, S. K., Bolli, R. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circulation Research. 113, 810-834 (2013).
  2. Fisher, S. A., Doree, C., Mathur, A., Martin-Rendon, E.

Explore More Articles

Mesh shaped Engineered Cardiac TissuesHuman IPS CellsMyocardial RepairPDMS SheetPoloxamer 407Collagen Type IBasement Membrane MatrixCell CultureTissue EngineeringCardiac Regeneration

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved