Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This work presents a microscopy method that allows live imaging of a single cell of Escherichia coli for analysis and quantification of the stochastic behavior of synthetic gene circuits.

Abstract

The protocol developed here offers a tool to enable computer tracking of Escherichia coli division and fluorescent levels over several hours. The process starts by screening for colonies that survive on minimal media, assuming that only Escherichia coli harboring the correct plasmid will be able to thrive in the specific conditions. Since the process of building large genetic circuits, requiring the assembly of many DNA parts, is challenging, circuit components are often distributed between multiple plasmids at different copy numbers requiring the use of several antibiotics. Mutations in the plasmid can destroy transcription of the antibiotic resistance genes and interject with resources management in the cell leading to necrosis. The selected colony is set on a glass-bottom Petri dish and a few focus planes are selected for microscopy tracking in both bright field and fluorescent domains. The protocol maintains the image focus for more than 12 hours under initial conditions that cannot be regulated, creating a few difficulties. For example, dead cells start to accumulate in the lenses' field of focus after a few hours of imaging, which causes toxins to buildup and the signal to blur and decay. Depletion of nutrients introduces new metabolic processes and hinder the desired response of the circuit. The experiment's temperature lowers the effectivity of inducers and antibiotics, which can further damage the reliability of the signal. The minimal media gel shrinks and dries, and as a result the optical focus changes over time. We developed this method to overcome these challenges in Escherichia coli, similar to previous works developing analogous methods for other micro-organisms. In addition, this method offers an algorithm to quantify the total stochastic noise in unaltered and altered cells, finding that the results are consistent with flow analyzer predictions as shown by a similar coefficient of variation (CV).

Introduction

Synthetic biology is a multidisciplinary field that has emerged in the past decade and aims to translate engineering design principles into rational biological design1,2,3, in an effort to achieve multi-signal integration and processing in living cells for understanding the basic science4,5, diagnostic, therapeutic and biotechnological applications6,7,8,9,10

Protocol

1. Media and culture preparation

  1. Prepare stock solution of 1,000x Carbenicillin (50 mg/mL) or relevant antibiotic.
    1. .Weigh 0.5 g of carbenicillin. Add 10 mL of sterile H2O. Dissolve completely.
    2. Sterilize carbenicillin stock through a 0.22 µm syringe filter. Aliquot the antibiotic solution and store at -20 °C.
  2. To prepare lysogeny broth (LB) plates, mix 5 g of tryptone, 5 g of NaCl, 2.5 g of yeast extract and 7.5 g of .......

Representative Results

The software analyzes bright field domain images that are off-white and black. The Escherichia coli will look like black oblong shapes on an off-white background and dynamic range of luminance should show a spike at its center (Figure 1). In fluorescent images cells may have a small halo but individual cells with oblong shapes can still be resolved. A mitosis event should be first detected after 30 minutes. Microscope focus should remain stable over time and although cells might mov.......

Discussion

In this work, we developed a protocol that enables computer tracing of Escherichia coli live cells, following division and fluorescent levels over a period of hours. This protocol allows us to quantify the stochastic dynamics of genetic circuits in Escherichia coli by measuring the CV and SNR in real time. In this protocol, we compared the stochastic behaviors of two different circuits as shown in Figure 10. It has been shown that plasmids with low copy numbers are more prone to stochas.......

Acknowledgements

We thank Mr. Gil Gelbert (Faculty of electric Engineering, Technion) for assisting with the MATLAB code. We thank Dr. Ximing Li (Faculty of bio-medical Engineering, Technion) for assisting with proofing this article. This research was partially supported by the Neubauer Family Foundation and Israel Ministry of Science, grant 2027345.

....

Materials

NameCompanyCatalog NumberComments
35mm glass dishmattekP35G-0.170-14-Cthickness corresponding with microscope lense.
Agarose Lonza5004LB preperation
AHL Sigma-AldrichK3007inducer
Bacto tryptone BD - Becton, Dickinson and Company 211705LB preperation
CarbInvitrogen10177-012antibiotic
CarbFormediumCAR0025antibiotic
Casamino acids BD - Becton, Dickinson and Company 223050minimal media solution
eclipse Tinikoninverted microscope
GlucoseSigma-AldrichG5767minimal media solution
GlyserolBio-Lab000712050100minimal media substrate
Immersol 518Fzeiss4449600000000immersion oil
M9 salt solution Sigma-AldrichM6030minimal media solution
NaClBio-Lab214010LB preperation
Noble agarSigma-AldrichA5431minimal media substrate
parafilm tapeBemisPM-996refered to as tape in text
Seaplaque GTG AgaroseLonza50111minimal media substrate
thaymine B1Sigma-AldrichT0376 minimal media solution
Yeast ExtractBD - Becton, Dickinson and Company 212750LB preperation

References

  1. Daniel, R., Rubens, J. R., Sarpeshkar, R., Lu, T. K. Synthetic analog computation in living cells. Nature. 497, 619-623 (2013).
  2. Yang, X. S. Y., L, A. B., Harwood, C., Jensen, G. . Imaging Bacterial Molecules, Structures and Cells. , (2016).
  3. Joyce, G., Roberts....

Explore More Articles

Biological NoiseEscherichia ColiTime lapse MicroscopyGenetic CircuitsSignal VariabilitySignal to noise RatioGFP ReporterBacterial CellLB BrothM9 Culture PlatesLow Melting AgarCasamino AcidMinimal Medium

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved