A subscription to JoVE is required to view this content. Sign in or start your free trial.
Freshwater planarians exhibit three gaits (gliding, peristalsis, and scrunching) that are distinguishable by quantitative behavioral analysis. We describe a method to induce scrunching using various noxious stimuli, quantification thereof, and distinction from peristalsis and gliding. Using gene knockdown, we demonstrate the specificity of scrunching as a quantitative phenotypic readout.
Freshwater planarians normally glide smoothly through ciliary propulsion on their ventral side. Certain environmental conditions, however, can induce musculature-driven forms of locomotion: peristalsis or scrunching. While peristalsis results from a ciliary defect, scrunching is independent of cilia function and is a specific response to certain stimuli, including amputation, noxious temperature, extreme pH, and ethanol. Thus, these two musculature-driven gaits are mechanistically distinct. However, they can be difficult to distinguish qualitatively. Here, we provide a protocol for inducing scrunching using various physical and chemical stimuli. We detail the quantitative characterization of scrunching, which can be used to distinguish it from peristalsis and gliding, using freely available software. Since scrunching is a universal planarian gait, albeit with characteristic species-specific differences, this protocol can be broadly applied to all species of planarians, when using appropriate considerations. To demonstrate this, we compare the response of the two most popular planarian species used in behavioral research, Dugesia japonica and Schmidtea mediterranea, to the same set of physical and chemical stimuli. Furthermore, the specificity of scrunching allows this protocol to be used in conjunction with RNA interference and/or pharmacological exposure to dissect the molecular targets and neuronal circuits involved, potentially providing mechanistic insight into important aspects of nociception and neuromuscular communication.
In addition to their popularity for stem cell and regeneration research1,2,3, freshwater planarians have long been used in behavioral studies4,5, taking advantage of their comparatively large size (a few millimeters in length), ease and low cost of laboratory maintenance, and broad spectrum of observable behaviors. The introduction of computer vision and automated tracking to planarian behavior studies6,7,8,
1. Quantitative planarian behavior assays
Extraocular near-UV perception in S. mediterranea planarians is TRPA1-dependent and has been proposed to be linked to H2O2 release17. Because H2O2 exposure induces TRPA1-dependent scrunching in S. mediterranea and D. japonica planarians28, the steps in Section 2.1.4 can be used to test whether near-UV light exposure induces scrunching in both species. While D. japonica planarians scrunch (10/10).......
Using this protocol, one can quantitatively study the effects of physical and chemical stimuli7,28,29 or genetic manipulation (RNAi)28,29 on planarian locomotion. To maximize spatial resolution, it is best to move the camera as close as possible to the arena while ensuring the entire arena is in the field of view. To increase throughput, the behavior of multiple planaria.......
The authors thank Mr. Tapan Goel for comments on the manuscript. This work was funded by NSF CAREER Grant 1555109.
....Name | Company | Catalog Number | Comments |
Allyl isothiocyanate, 95% (AITC) | Sigma-Aldrich | 377430-5G | CAUTION:Â Flammable and acutely toxic; handle in a fume hood with appropriate PPE. |
Camera lens, 2/3 25mm F/1.4Â | Tamron | 23FM25SP | |
Cell culture plates, 6 well, tissue culture treated | Genesee Scientific | 25-105 | |
Centrifuge tubes, 50 mL polypropylene, sterile | MedSupply Partners | 62-1019-2 | |
Cinnamaldehyde, >95% | Sigma-Aldrich | W228613-100G-K | |
Dimmable A4 LED Tracer Light Box | Amazon | B07HD631RP | |
Flea3 USB3 camera | FLIR | FL3-U3-13E4M | |
Heat resistant gloves | Fisher Scientific | 11-394-298 | |
Hot plate | Fisher Scientific | HP88854200 | |
Instant Ocean Sea Salt, prepared in deionized water | Instant Ocean | SS15-10 | Prepare in deionized water at 0.5 g/L. |
Montjüic salts, prepared in Milli-Q water | Sigma-Aldrich | various | Prepare in milli-Q water at 1.6 mM NaCl, 1.0 mM CaCl2, 1.0 mM MgSO4, 0.1 mM MgCl2, 0.1 mM KCl, 1.2 mM NaHCO3; adjust pH to 7.0 with HCl. |
Petri dishes, 100 mm x 20 mm, sterile polystyrene | Simport | D210-7 | |
Pipette, 20-200 μL range | Rainin | 17008652 | |
PYREX 150 mL beaker | Sigma-Aldrich | CLS1000150 | |
Razor blade, 0.22 mm | VWR | 55411-050 | |
Roscolux color filter:Â Golden Amber | Rosco | R21 | Alternatively purchase the Roscolux Designer Color Selector (Musson Theatrical product #SBLUX0306) which includes all 3 color filters together. |
Roscolux color filter:Â Medium Red | Rosco | R27 | |
Roscolux color filter:Â Storaro Red | Rosco | R2001 | |
Samco transfer pipette, 62 µL large aperture | Thermo Fisher | 691TS | |
Support stand | Fisher Scientific | 12-947-976 | |
Thermometer | VWR | 89095-600 | |
UV laser pointer | Amazon | B082DGS86R | This is a Class II laser (405nm ±10nm) with output power <5 mW. |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved