A subscription to JoVE is required to view this content. Sign in or start your free trial.
Presented here is a protocol for the synthesis of silver-palladium (Ag-Pd) alloy nanoparticles (NPs) supported on ZrO2 (Ag-Pd/ZrO2). This system allows for harvesting energy from visible light irradiation to accelerate and control molecular transformations. This is illustrated by nitrobenzene reduction under light irradiation catalyzed by Ag-Pd/ZrO2 NPs.
Localized surface plasmon resonance (LSPR) in plasmonic nanoparticles (NPs) can accelerate and control the selectivity of a variety of molecular transformations. This opens possibilities for the use of visible or near-IR light as a sustainable input to drive and control reactions when plasmonic nanoparticles supporting LSPR excitation in these ranges are employed as catalysts. Unfortunately, this is not the case for several catalytic metals such as palladium (Pd). One strategy to overcome this limitation is to employ bimetallic NPs containing plasmonic and catalytic metals. In this case, the LSPR excitation in the plasmonic metal can contribute to accelerate and control transformations driven by the catalytic component. The method reported herein focuses on the synthesis of bimetallic silver-palladium (Ag-Pd) NPs supported on ZrO2 (Ag-Pd/ZrO2) that acts as a plasmonic-catalytic system. The NPs were prepared by co-impregnation of corresponding metal precursors on the ZrO2 support followed by simultaneous reduction leading to the formation of bimetallic NPs directly on the ZrO2 support. The Ag-Pd/ZrO2 NPs were then used as plasmonic catalysts for the reduction of nitrobenzene under 425 nm illumination by LED lamps. Using gas chromatography (GC), the conversion and selectivity of the reduction reaction under the dark and light irradiation conditions can be monitored, demonstrating the enhanced catalytic performance and control over selectivity under LSPR excitation after alloying non-plasmonic Pd with plasmonic metal Ag. This technique can be adapted to a wide range of molecular transformations and NPs compositions, making it useful for the characterization of the plasmonic catalytic activity of different types of catalysis in terms of conversion and selectivity.
Among the several applications of metal nanoparticles (NPs), catalysis deserves special attention. Catalysis plays a central role in a sustainable future, contributing to less energy consumption, better utilization of raw materials, and enabling cleaner reaction conditions1,2,3,4. Thus, progress in catalysis can provide tools for enhancing the atomic efficiency of chemical processes, making them cleaner, more economically viable, and more environmentally friendly. Metal NPs encompassing silver (Ag), gold (Au) or copper (Cu) can display interesting optical properties in the visible range that arise from the unique way these systems interact with light at the nanoscale via the localized surface plasmon resonance (LSPR) excitation5,6,7,8. In these NPs, referred to as plasmonic NPs, the LSPR comprises the resonant interaction between the incident photons (from an incoming electromagnetic wave) with the collective motion of electrons5,6,7,8. This phenomenon takes place at a characteristic frequency which is dependent on the size, shape, composition, and dielectric constant of the environment9,10,11. For example, for Ag, Au, and Cu, these frequencies can range from the visible to the near-IR, opening up possibilities for the utilization of solar energy to excite their LSPR5,6,7,8,12,13.
Recently, it has been demonstrated that the LSPR excitation in plasmonic NPs can contribute to accelerate the rates and control the selectivity of molecular transformations5,14,15,16,17,18,19. This gave birth to a field called plasmonic catalysis, which focus on using energy from light to accelerate, drive, and/or control chemical transformations5,14,15,16,17,18,19. In this context, it has been established that the LSPR excitation in plasmonic NPs can lead to the formation of energetic hot electrons and holes, referred to as LSPR-excited hot carriers. These carriers can interact with adsorbed species through electronic or vibrational activation15,16. In addition to increased reaction rates, this process can also provide alternative reaction pathways not accessible via traditional thermochemically-driven processes, opening up new avenues for the control over reaction selectivity20,21,22,23,24,25. Importantly, it is worth noting that the plasmon decay can also lead to thermal dissipation, leading to a temperature increase in the vicinity of the NPs which can also contribute to speed up reaction rates15,16.
Due to these interesting features, plasmonic catalysis has been successfully employed towards a variety of molecular transformations18. Nevertheless, an important challenge remains. While plasmonic NPs such as Ag and Au display excellent optical properties in the visible and near-IR ranges, their catalytic properties are limited in terms of the scope of transformations. In other words, they do not display good catalytic properties for several of transformations. Additionally, metals that are important in catalysis, such as palladium (Pd) and platinum (Pt), do not support LSPR excitation in the visible or near-IR ranges. To bridge this gap, bimetallic NPs containing a plasmonic and catalytic metal represents an effective strategy20,26,27,28,29. In these systems, the plasmonic metal can be employed as an antenna to harvest energy from the light excitation through the LSPR, which is then used to drive, accelerate, and control molecular transformations at the catalytic metal. Therefore, this strategy enables us to extend plasmonic catalysis beyond traditional plasmonic metal NPs20,26,27,28,29.
This protocol describes the facile synthesis of bimetallic silver-palladium (Ag-Pd) alloyed NPs supported on ZrO2 (Ag-Pd/ZrO2) that can act as a plasmonic-catalytic system for plasmonic catalysis. The Ag-Pd/ZrO2 NPs were prepared by co-impregnation of the corresponding metal precursors on the ZrO2 support followed by simultaneous reduction30. This approach led to the formation of bimetallic NPs around 10 nm in size (diameter) directly at the surface of the ZrO2 support. The NPs were composed of 1 mol% of Pd to minimize the utilization of the catalytic metal while maximizing the optical properties of the resulting Ag-Pd NPs. A protocol for the application of the Ag-Pd/ZrO2 NPs in plasmonic catalysis was demonstrated for the reduction of nitrobenzene. We employed 425 nm LED illumination for the LSPR excitation. Gas chromatography was performed to monitor the conversion and selectivity of the reduction reaction under the dark and light irradiation conditions. LSPR excitation led to enhanced catalytic performance and control over selectivity in Ag-Pd/ZrO2 NPs relative to purely thermally driven conditions. The method described in this protocol is based on a simple photocatalytic reaction setup coupled with gas chromatography and can be adapted to a wide range of molecular transformations and NPs compositions. Thus, this method makes possible the characterization of photocatalytic activity, in terms of conversion and reaction selectivity, of different NPs and for a myriad of liquid-phase transformations. We believe this article will provide important guidelines and insights to both newcomers and more experienced scientists in the field.
1. Synthesis of Ag-Pd/ZrO2 NPs
NOTE: In this procedure, the Pd mol% in Ag-Pd corresponded to 1%, and the Ag-Pd loading on ZrO2 corresponded to 3 wt.%.
2. Separation and purification of the catalyst
3. Synthesis of Ag/ZrO2 NPs
NOTE: In this procedure, Ag loading on ZrO2 corresponded to 3 wt.%.
4. Separation and purification of the catalyst
5. Investigation of plasmonic catalytic performance towards the nitrobenzene reduction under LSPR excitation (light illumination)
6. Reaction in the absence of LSPR excitation (dark conditions)
7. Gas chromatography (GC) analysis preparation
8. GC analysis
Figure 1A shows digital photographs of the solid samples containing the pure ZrO2 oxide (left) and the Ag-Pd/ZrO2 NPs (right). This change in color from white (in ZrO2) to brown (Ag-Pd/ZrO2) provides the initial qualitative evidence on the deposition of Ag-Pd NPs at the ZrO2 surface. Figure 1B shows the UV-visible absorption spectra from the Ag-Pd/ZrO2 NPs (blue trace) as well as ZrO2 (...
The findings described in this method demonstrate that the intrinsic catalytic activity of Pd (or other catalytic but not plasmonic metal) can be significantly enhanced by LSPR excitation via visible-light irradiation in bimetallic alloyed NPs35. In this case, Ag (or another plasmonic metal) is capable of harvesting energy from visible-light irradiation via LSPR excitation. The LSPR excitation leads to the formation of hot charge carriers (hot electrons and holes) and localized heating...
The authors have nothing to disclose.
This work was supported by the University of Helsinki and the Jane and Aatos Erkko Foundation. S.H. thanks Erasmus+ EU funds for the fellowship.
Name | Company | Catalog Number | Comments |
2-Propanol (anhydrous, 99.5%) | Sigma-Aldrich | 278475 | CAS Number 67-63-0 |
Aniline (for synthesis) | Sigma-Aldrich | 8.22256 | CAS Number 62-53-3 |
Azobenzene (98%) | Sigma-Aldrich | 424633 | CAS Number 103-33-3 |
Ethanol | Honeywell | 32221 | CAS Number 64-17-5 |
Hydrochloric acid (37%) | VWR | PRLSMC310066 | CAS Number 7647-01-0 |
L-Lysine (crystallized, ≥98.0% (NT)) | Sigma-Aldrich | 62840 | CAS Number 56-87-1 |
Nitric acid (65%) | Merck | 100456 | CAS Number 7697-37-2 |
Nitrobenzene | Sigma-Aldrich | 8.06770 | CAS Number 98-95-3 |
Potassium hydroxide | Fisher | 10448990 | CAS Number 1310-58-3 |
Potassium tetrachloropalladate (II) (98%) | Sigma-Aldrich | 205796 | CAS Number 10025-98-6 |
Silver nitrate (ACS reagent, ≥99.0%) | Sigma-Aldrich | 209139 | CAS Number 7761-88-8 |
Sodium borohydride (fine granular for synthesis) | Sigma-Aldrich | 8.06373 | CAS Number 16940-66-2 |
Zirconium (IV) oxide (nanopowder, <100 nm particle size (TEM)) | Sigma-Aldrich | 544760 | CAS Number 1314-23-4 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved