A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The development of the mammalian brain requires proper control of gene expression at the level of translation. Here, we describe a polysome profiling system with an easy-to-assemble sucrose gradient-making and fractionation platform to assess the translational status of mRNAs in the developing brain.

Abstract

The proper development of the mammalian brain relies on a fine balance of neural stem cell proliferation and differentiation into different neural cell types. This balance is tightly controlled by gene expression that is fine-tuned at multiple levels, including transcription, post-transcription and translation. In this regard, a growing body of evidence highlights a critical role of translational regulation in coordinating neural stem cell fate decisions. Polysome fractionation is a powerful tool for the assessment of mRNA translational status at both global and individual gene levels. Here, we present an in-house polysome profiling pipeline to assess translational efficiency in cells from the developing mouse cerebral cortex. We describe the protocols for sucrose gradient preparation, tissue lysis, ultracentrifugation and fractionation-based analysis of mRNA translational status.

Introduction

During the development of the mammalian brain, neural stem cells proliferate and differentiate to generate neurons and glia1,2 . The perturbation of this process can lead to alterations in brain structure and function, as seen in many neurodevelopmental disorders3,4. The proper behavior of neural stem cells requires the orchestrated expression of specific genes5. While the epigenetic and transcriptional control of these genes has been intensively studied, recent findings suggest that gene regulation at other levels also contribu....

Protocol

All animal use was supervised by the Animal Care Committee at the University of Calgary. CD1 mice used for the experiment were purchased from commercial vendor.

1. Preparation of solutions

NOTE To prevent RNA degradation, spray workbench and all equipment with RNase decontamination solution. RNase-free tips are used for the experiment. All solutions are prepared in RNase-free water.

  1. Prepare cycloheximide stock solution (100 mg/mL) in DMSO and store at -20 °C.
  2. Prepare 2.2 M sucrose stock solution by adding 75.3 g of sucrose to RNase-free water and topping up the volume to 100 mL (for ~16....

Results

As a demonstration, the cortical lysate containing 75 µg RNA (pooled from 8 embryos) was separated by the sucrose gradient into 12 fractions. Peaks of UV absorbance at 254 nm identified fractions containing the 40S subunit, 60S subunit, 80S monosome and polysomes (Figure 4A). Analysis of fractions by western blot for the large ribosomal subunit, Rpl10 showed its presence in the 60S subunit (fraction 3), monosome (fraction 4) and polysomes (fractions 5-12) (Figure 4B.......

Discussion

Polysome profiling is a commonly used and powerful technique to assess the translational status at both single gene and genome-wide levels14 . In this report, we present a protocol of polysome profiling using a home-assembled platform and its application to analyze the developing mouse cortex. This cost-effective platform is easy to assemble and generate robust, reproducible sucrose gradients and polysome profiling with high sensitivity.

It is worthy to note that the pr.......

Disclosures

The authors declare no competing interests.

Acknowledgements

This work was funded by a NSERC Discovery Grant (RGPIN/04246-2018 to G.Y.). G.Y. is a Canada Research Chair. S.K. was funded by Mitacs Globalink Graduate Fellowship and ACHRI Graduate Student Scholarship.

....

Materials

NameCompanyCatalog NumberComments
1.5 mL RNA free microtubesAxygenMCT-150-C
10 cm dishGreiner-Bio664160
1M MgCl2InvitrogenAM9530G
21-23G needleBD305193
2M KClInvitrogenAM8640G
30 mL syringeBD302832
Blunt end needleVWR20068-781
BreadboardThorlabsMB2530/M
Bromophenol blueSigma115-39-9
CD1 mouseCharles River Laboratory
Curved tip forcepsSigma#Z168785
CycloheximideSigma66-81-9
Data acquisition software TracerDAQMeasurement Computing
Digital converterMeasurement ComputingUSB-1208LS
Direct-zol RNA miniprep kitZymoR2070
Dithiothreitol (DTT)Bio-basic12-03-3483
DMSOBioshop67-68-5
Dumont No.5 forcepsSigma#F6521
Fraction collectorBio-RadModel 2110
HBSSWisent311-513-CL
Linear stage actuatorRattmmotorCBX1605-100A
Luciferase control RNAPromegaL4561
Maxima first strand cDNA synthesis kitThemo FisherM1681
Miniature V-clampThorlabsVH1/M
Mini-series breadboardThorlabsMSB7515/M
Mini-series optical postThorlabsMS2R/M
Mini-series pedestal post holder baseThorlabsMBA1
NaClBio-basic7647-14-5
Neurobasal mediaGibco21103-049
Ø12.7 mm aluminum postThorlabsTRA150/M
ParafilmBemisPM992
PerfeCTa SYBR green fastmixQuanta BioCA101414-274
Phosphate buffered saline (PBS)Wisent311-010-CL
PuromycinBioshop58-58-2
Right-angle clampThorlabsRA90/M
Right-angle Ø1/2" to Ø6 mm post clampThorlabsRA90TR/M
Rnase AWAYMolecular BioProducts7002
RNase free tipsFrogga BioFT10, FT200, FT1000
RNase free waterWisent809-115-CL
RNasinPromegaN2111
Slim right-angle bracketThorlabsAB90B/M
Small V-clampThorlabsVC1/M
Sodium deoxycholateSigma302-95-4
Stepper motor driverSongHeTB6600
SucroseBioshop57501
SW 41 Ti rotorBeckman Coulter331362
Syringe pumpHarvard Apparatus70-4500
Syringe pumpHarvard Apparatus70-4500
Triton-X-100Bio-basic9002-93-1
TrizolThermofisher Scientific15596018
Tube piercerBrandelBR-184
UltracentrifugeBeckman CoulterL8-70M
Ultracentrifuge tubesBeckman Coulter331372
UltraPure 1M Tris-HCl pH 7.5Invitrogen15567-027
UNO project super starter kitElegooEL-KIT-003
UV monitorBio-RadEM-1 Econo
Vertical bracketThorlabsVB01A/M

References

  1. Götz, M., Huttner, W. B. The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology. 6, 777-788 (2005).
  2. Guillemot, F. Spatial and temporal specification of neural fates by transcription factor codes.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Polysome ProfilingTranslational RegulationBrain DevelopmentSucrose GradientEmbryonic Day 12Mouse CortexCycloheximideRNA Extraction

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved