A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This method introduces a simple technique for the detection of endogenous monoamine release using acute brain slices. The setup uses a 48-well plate containing a tissue holder for monoamine release. Released monoamine is analyzed by HPLC coupled with electrochemical detection. Additionally, this technique provides a screening method for drug discovery.
Monoamine neurotransmitters are associated with numerous neurologic and psychiatric ailments. Animal models of such conditions have shown alterations in monoamine neurotransmitter release and uptake dynamics. Technically complex methods such as electrophysiology, Fast Scan Cyclic Voltammetry (FSCV), imaging, in vivo microdialysis, optogenetics, or use of radioactivity are required to study monoamine function. The method presented here is an optimized two-step approach for detecting monoamine release in acute brain slices using a 48-well plate containing tissue holders for examining monoamine release, and high-performance liquid chromatography coupled with electrochemical detection (HPLC-ECD) for monoamine release measurement. Briefly, rat brain sections containing regions of interest, including prefrontal cortex, hippocampus, and dorsal striatum were obtained using a tissue slicer or vibratome. These regions of interest were dissected from the whole brain and incubated in an oxygenated physiological buffer. Viability was examined throughout the experimental time course, by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acutely dissected brain regions were incubated in varying drug conditions that are known to induce monoamine release through the transporter (amphetamine) or through the activation of exocytotic vesicular release (KCl). After incubation, the released products in the supernatant were collected and analyzed through an HPLC-ECD system. Here, basal monoamine release is detected by HPLC from acute brain slices. This data supports previous in vivo and in vitro results showing that AMPH and KCl induce monoamine release. This method is particularly useful for studying mechanisms associated with monoamine transporter-dependent release and provides an opportunity to screen compounds affecting monoamine release in a rapid and low-cost manner.
A plethora of neurological and psychiatric diseases are associated with dysregulation or insufficient maintenance of monoamine neurotransmitter (dopamine [DA], serotonin [5-HT], norepinephrine [NE]) homeostasis1,2,3. These conditions include, but are not limited to, depression1,2, schizophrenia2, anxiety2, addiction4, menopause5,6,7, pain
All experiments, including animal handling and tissue collection, were carried out in accordance with the University of Florida and the City College of New York Institutional Animal Care and Use Committee (IACUC), following the approved protocol 201508873 (UF) and 1071 (CCNY). For reagents and buffer please refer to the Supplementary File.
1. Prepare acute rat brain slices
NOTE: In this experiment adult male rats (250-350 g) were used. However, this s.......
This technique describes the use of brain slices to measure the release of endogenous monoamines using HPLC with electrochemical detection based in a 48-well plate with an internal tissue holder. Experimental set up is depicted in Figure 1 and Figure 2. Initially, to ensure tissue viability by the end of the experimentation, an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay was performed. Af.......
Monoamine release measurements have been performed for years in a number of systems such as heterologous cells, neuronal cultures, brain synaptosomes, ex vivo acute brain slices, and whole animals13,20,41,42,58,64,65,66,67.......
The authors have no disclosures.
This work was supported by grants Fondecyt Initiation Fund N 11191049 to J.A.P. and NIH grant DA038598 to G.E.T.
....Name | Company | Catalog Number | Comments |
48 Well plate | NA | NA | Assay |
Acetonitrile | Fischer Scientific | A998-1 | Mobile Phase |
Calcium Chloride Ahydrous | Sigma Aldrich | C1016 | Modified Artifical Cerebrospinal Fluid OR Efflux Buffer |
Clarity Software | Anetc | ||
Citric Acid | Sigma Aldrich | Mobile Phase | |
D-(+)-Glucose | Sigma | 1002608421 | Dissection Buffer |
DMF | Sigma Aldrich | D4551 | MTT Assay |
EDTA-Na2 | Sigma Aldrich | Mobile Phase | |
GraphPad Software | Graphpad Software, Inc | Statistical Analysis | |
Glycerol | Sigma Aldrich | G5516 | Lysis buffer |
HEPES | Sigma Aldrich | H3375 | Lysis buffer |
HPLC, Decade Amperometric | Anetc | HPLC, LC-EC system | |
HPLC | Amuza | HPLC HTEC-510. | |
L-Asrobic Acid | Sigma Aldrich | A5960 | Dissection Buffer |
Magnesium Sulfate | Sigma | 7487-88-9 | KH Buffer |
Microcentrifuge Filter Units UltraFree | Millipore | C7554 | Assay - 6 to fit in 48 well plate |
MTT | Thermo Fisher | M6494 | MTT Assay |
Nanosep | VWR | 29300-606 | Assay; protein assay |
Octanesulfonic acid | Sigma Aldrich | V800010 | Mobile Phase |
Pargyline Clorohydrate | Sigma Aldrich | P8013 | Modified Artifical Cerebrospinal Fluid OR Efflux Buffer |
Phosphoric Acid | Sigma Aldrich | Mobile Phase | |
Potassium Chloride | Sigma | 12636 | KH Buffer |
Potassium Phosphate Monobasic | Sigma | 1001655559 | KH Buffer |
Precisonary VF-21-0Z | Precissonary | Compresstome | |
Protease Inhibitor Cocktail | Sigma Aldrich | P2714 | Lysis buffer. |
Sodium Bicarbonate | Sigma | S5761 | Dissection Buffer |
Sodium Bicarbonate | Sigma Aldrich | S5761 | Dissection Buffer |
Sodium Chloride | Sigma | S3014 | KH Buffer |
Sodium Dodecyl Sulfate | Sigma Aldrich | L3771 | Lysis buffer |
Triton X-100 | Sigma Aldrich | T8787 | MTT Assay / Lysis buffer |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved