JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

ROS Live Cell Imaging During Neuronal Development

Published: February 9th, 2021

DOI:

10.3791/62165

1Department of Biological Sciences, Purdue University, 2Purdue Institute for Integrative Neuroscience, Purdue University, 3Bindley Bioscience Center, Purdue University

This protocol describes the use of a genetically encoded hydrogen peroxide (H2O2)-biosensor in cultured zebrafish neurons and larvae for assessing the physiological signaling roles of H2O2 during nervous system development. It can be applied to different cell types and modified with experimental treatments to study reactive oxygen species (ROS) in general development.

Reactive oxygen species (ROS) are well-established signaling molecules, which are important in normal development, homeostasis, and physiology. Among the different ROS, hydrogen peroxide (H2O2) is best characterized with respect to roles in cellular signaling. H2O2 has been implicated during the development in several species. For example, a transient increase in H2O2 has been detected in zebrafish embryos during the first days following fertilization. Furthermore, depleting an important cellular H2O2 source, NADPH oxidase (NOX), impairs nervous system development such as the differentiation, axonal growth, and guidance of retinal ganglion cells (RGCs) both in vivo and in vitro. Here, we describe a method for imaging intracellular H2O2 levels in cultured zebrafish neurons and whole larvae during development using the genetically encoded H2O2-specific biosensor, roGFP2-Orp1. This probe can be transiently or stably expressed in zebrafish larvae. Furthermore, the ratiometric readout diminishes the probability of detecting artifacts due to differential gene expression or volume effects. First, we demonstrate how to isolate and culture RGCs derived from zebrafish embryos that transiently express roGFP2-Orp1. Then, we use whole larvae to monitor H2O2 levels at the tissue level. The sensor has been validated by the addition of H2O2. Additionally, this methodology could be used to measure H2O2 levels in specific cell types and tissues by generating transgenic animals with tissue-specific biosensor expression. As zebrafish facilitate genetic and developmental manipulations, the approach demonstrated here could serve as a pipeline to test the role of H2O2 during neuronal and general embryonic development in vertebrates.

Reactive oxygen species (ROS) signaling regulates development and functioning of the nervous system1. An important cellular ROS source are NADPH oxidases (NOX), which are transmembrane proteins generating superoxide and hydrogen peroxide (H2O2)2. NOX enzymes are found throughout the central nervous system (CNS), and NOX-derived ROS contribute to neuronal development3,4,5,6. Maintenance and differentiation of neural stem cells, establishing neuronal polarity, neurite outgro....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal experiments were ethically reviewed and approved by the Purdue Animal Care and Use Committee (PACUC), following NIH guidelines with the protocol 2006002050 approved on 07/24/2020.

1. Preparation of solutions

  1. E2 media (1x)
    1. Prepare 100x E2A (500 mL), 500x E2B (100 mL) and 500x E2C (100 mL) solutions by combining all components shown in Table 1. Autoclave E2A, E2B and E2C solutions. Store at 4 °C.
    2. For 1x E2 media: Combine 5 mL of.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Cultured zebrafish RGCs extend axons within 1d. A representative 405/480 ratio image of the H2O2-biosensor is shown in Figure 4A. The cell body, axon, and growth cones are clearly visible in individual neurons. These neurons can be subjected to different treatments over time to monitor H2O2 changes. We previously found that adding 100 µM H2O2 to culture media increases the ratio values, showing that real-time changes can .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

There are several critical steps that need attention throughout this protocol. We believe considering these points will improve the experimental flow. For primary RGC culture, the sterility of the ZFCM(-) is very important, since this culture media does not contain antibiotics and contamination can occur before or during imaging. To avoid it, we advise to prepare and use ZFCM(-) only inside a biosafety cabinet and make fresh ZFCM(-) media regularly (Step 1.5). In addition, laminin stocks should be kept at -80 °.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the National Institutes of Health (Grant R01NS117701), National Science Foundation (Grant 1146944-IOS), the Indiana Traumatic Spinal Cord and Brain Injury Research Fund (Grant 20000289), the Purdue Research Foundation (Grant 209911), and the Office of the Executive Vice President for Research and Partnerships at Purdue University (Grant 210362). We thank Dr. Cory J. Weaver and Haley Roeder for establishing zebrafish RGC culture protocol. We thank Haley Roeder additionally for providing the data of Figure 4. We thank Leah Biasi and Kenny Nguyen for the help with RGC culture. We thank Gentry Lee for editing the text. We thank Dr. Tobias Dick f....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
35-mm culture dish Sarstedt 83-3900
35-mm glass bottom dish MatTek P35G-1.5-10-C
Agarose Fisher Scientific BP160-500
Borosilicate Glass Capillary Tubes Sutter/Fisher Scientific NC9029378
Calcium Chloride Dihydrate Fisher Scientific C79-500
Cover glass Corning 2850-22
Disposable Petri Dishes (100 x 15 mm) VWR 25384-094
Fetal Bovine Serum ThermoFisher Scientific 26140087
Glucose Sigma Aldich G7528
HEPES Sigma Aldich H4034
Injection Mold Adaptive Science Tools TU-1
Inverted Microscope Nikon TE2000
Laminin ThermoFisher Scientific 23017-015
Laser Scanning Confocal Microscopy Zeiss 710
Leibovitz's L-15 Medium with phenol red Gibco/Fisher Scientific 11-415-064
Leibovitz's L-15 Medium without phenol red Gibco/Fisher Scientific 21-083-027
Low melting agarose Promega V2111
mMessage mMachine SP6 Transcription Kit Invitrogen AM1340
NotI New England Biolabs R0189S
PBS Hyclone/Fisher Scientific SH3025601
Penicillin/streptomycin ThermoFisher Scientific 15140122
Phenol Red Sigma Aldich P0290
Phenylthiourea (PTU) Sigma Aldich P7629
Pneumatic PicoPump World Precision Instruments PV820
Poly-D-Lysine (PDL) Sigma Aldich P7280
QiaQUICK PCR Purification Kit QIAGEN 28104
Recombinant mouse slit2 R&D Systems 5444-SL-050
Sodium Pyruvate Sigma Aldich P5280
Steritop 0.22 µm filter Millipore S2GPT05RE
TE Buffer Ambion AM9860
Tricaine Methanesulfonate Sigma Aldich E10521
Vertical Pipette Puller David Kopf Instruments 700C

  1. Bórquez, D. A., et al. Dissecting the role of redox signaling in neuronal development. Journal of Neurochemistry. 137 (4), 506-517 (2016).
  2. Bedard, K., Krause, K. -. H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews. 87 (1), 245-313 (2007).
  3. Weaver, C. J., Leung, Y. F., Suter, D. M. Expression dynamics of NADPH oxidases during early zebrafish development. Journal of Comparative Neurology. 524 (10), 2130-2141 (2016).
  4. Terzi, A., Suter, D. M. The role of NADPH oxidases in neuronal development. Free Radical Biology and Medicine. 154, 33-47 (2020).
  5. Infanger, D. W., Sharma, R. V., Davisson, R. L. NADPH oxidases of the brain: Distribution, regulation, and function. Antioxidants & Redox Signaling. 8 (9-10), 1583-1596 (2006).
  6. Coyoy, A., Olguin-Albuerne, M., Martinez-Briseno, P., Moran, J. Role of reactive oxygen species and NADPH-oxidase in the development of rat cerebellum. Neurochemistry International. 62 (7), 998-1011 (2013).
  7. Le Belle, J. E., et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 8 (1), 59-71 (2011).
  8. Nayernia, Z., et al. Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: from mouse brain to neural differentiation of patient derived iPSC. Redox Biology. 13, 82-93 (2017).
  9. Wilson, C., Nunez, M. T., González-Billault, C. Contribution of NADPH oxidase to the establishment of hippocampal neuronal polarity in culture. Journal of Cell Science. 128 (16), 2989-2995 (2015).
  10. Munnamalai, V., et al. Bidirectional interactions between Nox2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. Journal of Neurochemistry. 130 (4), 526-540 (2014).
  11. Kishida, K. T., et al. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Molecular and Cellular Biology. 26 (15), 5908-5920 (2006).
  12. Ravelli, K. G., et al. Nox2-dependent neuroinflammation in an EAE model of multiple sclerosis. Translational Neuroscience. 10 (1), 1-9 (2019).
  13. Park, L., et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proceedings of the National Academy of Sciences. 105 (4), 1347-1352 (2008).
  14. Schiavone, S., Neri, M., Trabace, L., Turillazzi, E. The NADPH oxidase NOX2 mediates loss of parvalbumin interneurons in traumatic brain injury: Human autoptic immunohistochemical evidence. Scientific Reports. 7 (1), 8752 (2017).
  15. Gutscher, M., et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. Journal of Biological Chemistry. 284 (46), 31532-31540 (2009).
  16. Bilan, D. S., Belousov, V. V. New tools for redox biology: from imaging to manipulation. Free Radical Biology and Medicine. 109, 167-188 (2016).
  17. Abu-Siniyeh, A., Al-Zyoud, W. Highlights on selected microscopy techniques to study zebrafish developmental biology. Laboratory Animal Research. 36 (1), 12 (2020).
  18. Sassen, W. A., Koster, R. W. A molecular toolbox for genetic manipulation of zebrafish. Advances in Genomics and Genetics. 5, 151-163 (2015).
  19. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. Journal of Visualized Experiments. (25), e1115 (2009).
  20. Avdesh, A., et al. Regular care and maintenance of a Zebrafish (Danio rerio) laboratory: An introduction. Journal of Visualized Experiments. (69), e4196 (2012).
  21. Chen, Z., et al. Primary neuron culture for nerve growth and axon guidance studies in Zebrafish (Danio rerio). PLoS One. 8 (3), 57539 (2013).
  22. Zhang, L., Leung, Y. F. Microdissection of zebrafish embryonic eye tissues. Journal of Visualized Experiments. (40), e2028 (2010).
  23. Suter, D. M. Live cell imaging of neuronal growth cone motility and duidance in vitro. Cell Migration: Methods in Molecular Biology. , 65-86 (2011).
  24. Weaver, C. J., et al. nox2/cybb deficiency affects zebrafish retinotectal connectivity. Journal of Neuroscience. 38 (26), 5854-5871 (2018).
  25. Morgan, B., Sobotta, M. C., Dick, T. P. Measuring EGSH and H2O2 with roGFP2-based redox probes. Free Radical Biology and Medicine. 51, 1943-1951 (2011).
  26. Li, Z., et al. Phenylthiourea specifically reduces zebrafish eye size. PLoS One. 7 (6), 40132 (2012).
  27. Ermakova, Y. G., et al. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nature Communications. 5, 5222 (2014).
  28. Oparka, M., et al. Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods. 109, 3-11 (2016).
  29. Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V., Chang, C. J. Nox2 redox signaling maintains essential cell populations in the brain. Nature Chemical Biology. 7 (2), 106-112 (2011).
  30. Cannon, M. B., Remington, S. J. Redox-sensitive green fluorescent protein: Probes for dynamic intracellular redox responses. A review. Methods in Molecular Biology. 476, 51-65 (2009).
  31. Meyer, A. J., Dick, T. P. Fluorescent protein-based redox probes. Antioxidants & Redox Signaling. 13 (5), 621-650 (2010).
  32. Panieri, E., Millia, C., Santoro, M. M. Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues. Free Radical Biology and Medicine. 109, 189-200 (2017).
  33. Breus, O., Dickmeis, T. Genetically encoded thiol redox-sensors in the zebrafish model: Lessons for embryonic development and regeneration. Biological Chemistry. , (2020).
  34. Morgan, B., et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nature Chemical Biology. 12 (6), 437-443 (2016).
  35. Terzi, A., Roeder, H., Weaver, C. J., Suter, D. M. Neuronal NADPH oxidase 2 regulates growth cone guidance downstream of slit2/robo2. Developmental Neurobiology. , (2020).
  36. Bilan, D. S., Belousov, V. V. HyPer family probes: State of the art. Antioxidants & Redox Signaling. 24 (13), 731-751 (2016).
  37. Ermankova, Y. G., et al. SypHer3s: a genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chemistry Communications. 54 (23), 2898-2901 (2018).
  38. Pak, V. V., et al. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metabolism. 31 (3), 642-653 (2020).
  39. Kwan, K. M., et al. The Tol2kit: A multisite gateway-based construction Kit for Tol2 transposon transgenesis constructs. Developmental Dynamics. 236 (11), 3088-3099 (2007).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved