JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Robot-Assisted Kidney Transplantation

Published: July 19th, 2021



1Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine

This paper provides technical details for robot-assisted kidney transplantation from a living donor.

This paper describes robot-assisted kidney transplantation (RAKT) from a living donor. The robot is docked between the parted legs of the patient, placed in the supine Trendelenburg position. Kidney allografts are provided by a living donor. Before vascular anastomosis, the kidney allograft is prepared by inserting a double-J stent in the ureter, and the temperature for the anastomosis is lowered by wrapping it in an ice-packed gauze. A 12 mm or 8 mm port for the robotic camera and three 8 mm ports for robotic arms are placed. A peritoneal pouch is created for the kidney allograft by raising the peritoneal flaps on both sides over the psoas muscle before dissecting the iliac vessels and bladder. A 6 cm Pfannenstiel incision is made to insert the kidney into the peritoneal pouch, lateral to the right iliac vessels.

After clamping the external iliac vein with Bulldogs clamps, a venotomy is performed, and the graft renal vein is anastomosed to the external iliac vein in an end-to-side continuous manner with a 6/0 polytetrafluoroethylene suture. After clamping the graft renal vein, the iliac vein is declamped. This is followed by clamping of the external iliac artery, arteriotomy, arterial anastomosis with a 6/0 polytetrafluoroethylene suture, clamping of the graft renal artery, and declamping of the external iliac artery. Reperfusion is then carried out, and ureteroneocystostomy is performed using the Lich-Gregoir technique. The peritoneum is closed at a few locations with polymer locking clips, and a closed-suction drain is placed through one of the working ports. After deflating the pneumoperitoneum, all incisions are closed.

Kidney transplantation contributes to prolonged survival and a better quality of life compared with peritoneal dialysis or hemodialysis1. Although the open approach is the standard procedure for kidney transplantation, robotic-assisted techniques have been recently adopted2,3,4. Specifically, robot-assisted kidney transplantation (RAKT) has several advantages over open kidney transplantation: minimal postoperative pain, better cosmesis, fewer wound infections, and shorter hospital stay5. Moreover, minimally invasive access ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study got approval from the Institutional Review Board of Asan Medical Center (IRB number: 2021-0101).

1. Pretransplant preparation

  1. Patient selection
    1. Include patients with end-stage renal disease who require kidney transplantation.
      NOTE: RAKT may not be considered if a recipient is younger than eighteen years old.
    2. Exclude those with any kind of untreated malignancy or active infection.
    3. Ensure that the recipient is suitable for surgery .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We set up a routine clinical pathway for recipients who have RAKT at our center. Renal Doppler ultrasound is performed one day post-transplant and technetium-99m diethylenetriamine penta-acetic acid renal scan two days post-transplant. For venous thromboembolism prophylaxis, an intermittent pneumatic compression device is applied during the first 24 h after RAKT. Foley catheter is removed on the fourth postoperative day. On the fifth day, a closed-suction drain is removed after confirming no intra-abdominal complication .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Although laparoscopic and robotic-assisted techniques have been widely applied for living donor nephrectomy, kidney transplantations are still mainly performed using conventional open techniques. Recently, however, a minimally invasive approach for kidney transplantation has been increasingly used. Compared with traditional open surgery, minimally invasive kidney transplantation has a lower risk of surgical site infection, incisional hernia, and wound dehiscence, as well as shorter hospitalization12

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Dr. Joon Seo Lim from the Scientific Publications Team at Asan Medical Center for his editorial assistance in preparing this manuscript.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
12 mm Fluorescence Endoscope, 30° Intuitive Surgical 370893 robotic instrument
8 mm Blunt Obturator Intuitive Surgical 420008 robotic instrument
8 mm Instrument Cannula Intuitive Surgical 420002 robotic instrument
ATRAUMATIC ROBOTIC VESSEL CLIPS RZ Medizintechnic GmbH 300-100-799
Black Diamond Micro Forceps Intuitive Surgical 420033 robotic instrument
COATED VICRYL 4-0 Ethicon Endo-Surgery, Inc. W9437
Da Vinci Si, X, or Xi Intuitive Surgical
Fenestrated bipolar forceps Intuitive Surgical 470205 robotic instrument
GELPORT LAPAROSCOPIC SYSTEM Applied Medical Resources Corporation C8XX2 standard laparoscopic equipment
GORE-TEX SUTURE CV-6 W.L. Gore and Associates Inc. 6M02A
GORE-TEX SUTURE CV-7 W.L. Gore and Associates Inc. 7K02A
Hot Shears (Monopolar Curved Scissors) Intuitive Surgical 420179 robotic instrument
laparoscopic atraumatic grasping forceps standard laparoscopic equipment
laparoscopic irrigation suction set standard laparoscopic equipment
Large Clip Applier Intuitive Surgical 420230 robotic instrument
Large Needle Driver Intuitive Surgical 420006 robotic instrument
Maryland Bipolar Forceps Intuitive Surgical 420172 robotic instrument
Medium-Large Clip Applier Intuitive Surgical 420327 robotic instrument
OPEN END URETERAL CATHETER Cook Incorporated 21305 heparin flushing
PDS II 6-0 (DOUBLE) Ethicon Endo-Surgery, Inc. Z1712H
Potts Scissors Intuitive Surgical 420001 robotic instrument
ProGrasp Forceps Intuitive Surgical 420093 robotic forceps
Small Clip Applier Intuitive Surgical 420003 robotic instrument
VESSEL LOOP BLUE MAXI ASPEN surgical 011012pbx
VESSEL LOOP RED MINI ASPEN surgical 011001pbx
XCEL BLADELESS TROCAR JOHNSON & JOHNSON 2B12LT standard laparoscopic equipment

  1. Wolfe, R. A., et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. New England Journal of Medicine. 341 (23), 1725-1730 (1999).
  2. Hoznek, A., et al. Robotic assisted kidney transplantation: an initial experience. Journal of Urology. 167 (4), 1604-1606 (2002).
  3. Breda, A., et al. Robotic-assisted kidney transplantation: our first case. World Journal of Urology. 34 (3), 443-447 (2016).
  4. Menon, M., et al. Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). European Urology. 65 (5), 1001-1009 (2014).
  5. Tzvetanov, I., D'Amico, G., Benedetti, E. Robotic-assisted kidney transplantation: our experience and literature review. Current Transplantation Reports. 2 (2), 122-126 (2015).
  6. Giulianotti, P., et al. Robotic transabdominal kidney transplantation in a morbidly obese patient. American Journal of Transplantation. 10 (6), 1478-1482 (2010).
  7. Oberholzer, J., et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. American Journal of Transplantation. 13 (3), 721-728 (2013).
  8. Tzvetanov, I. G., et al. Robotic kidney transplantation in the obese patient: 10-year experience from a single center. American Journal of Transplantation. 20 (2), 430-440 (2020).
  9. Garcia-Roca, R., et al. Single center experience with robotic kidney transplantation for recipients with BMI of 40 kg/m2 or greater: a comparison with the UNOS registry. Transplantation. 101 (1), 191-196 (2017).
  10. Gallioli, A., et al. Learning curve in robot-assisted kidney transplantation: results from the European Robotic Urological Society Working Group. European Urology. 78 (2), 239-247 (2020).
  11. Alberts, V. P., Idu, M. M., Legemate, D. A., Laguna Pes, M. P., Minnee, R. C. Ureterovesical anastomotic techniques for kidney transplantation: a systematic review and meta-analysis. Transplant International. 27 (6), 593-605 (2014).
  12. Modi, P., et al. Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation. 95 (1), 100-105 (2013).
  13. Oberholzer, J., et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. American Journal of Transplantation. 13 (3), 721-728 (2013).
  14. Menon, M., et al. Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). European Urology. 65 (5), 991-1000 (2014).
  15. Tsai, M. K., et al. Robot-assisted renal transplantation in the retroperitoneum. Transplant International. 27 (5), 452-457 (2014).
  16. Sood, A., et al. Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes. Transplantation. 99 (2), 316-323 (2015).
  17. Modi, P., et al. Laparoscopic transplantation following transvaginal insertion of the kidney: description of technique and outcome. American Journal of Transplantation. 15 (7), 1915-1922 (2015).
  18. Wagenaar, S., et al. Minimally invasive, laparoscopic, and robotic-assisted techniques versus open techniques for kidney transplant recipients: a systematic review. European Urology. 72 (2), 205-217 (2017).
  19. Gastrich, M. D., Barone, J., Bachmann, G., Anderson, M., Balica, A. Robotic surgery: review of the latest advances, risks, and outcomes. Journal of Robotic Surgery. 5 (2), 79-97 (2011).
  20. Modi, P., et al. Robotic assisted kidney transplantation. Indian Journal of Urology. 30 (3), 287-292 (2014).
  21. Vignolini, G., et al. The University of Florence technique for robot-assisted kidney transplantation: 3-year experience. Frontiers in Surgery. 7, 583798 (2020).
  22. Musquera, M., et al. Robot-assisted kidney transplantation: update from the European Robotic Urology Section (ERUS) series. BJU International. 127 (2), 222-228 (2021).
  23. Breda, A., et al. Robot-assisted kidney transplantation: the European experience. European Urology. 73 (2), 273-281 (2018).
  24. Siena, G., et al. Robot-assisted kidney transplantation with regional hypothermia using grafts with multiple vessels after extracorporeal vascular reconstruction: results from the European Association of Urology Robotic Urology Section Working Group. European Urology Focus. 4 (2), 175-184 (2018).
  25. Prudhomme, T., et al. Robotic-assisted kidney transplantation in obese recipients compared to non-obese recipients: the European experience. World Journal of Urology. 39 (4), 1287-1298 (2020).
  26. Vignolini, G., et al. Development of a robot-assisted kidney transplantation programme from deceased donors in a referral academic centre: technical nuances and preliminary results. BJU International. 123 (3), 474-484 (2019).
  27. Ahlawat, R., et al. Robotic kidney transplantation with regional hypothermia versus open kidney transplantation for patients with end stage renal disease: an ideal stage 2B study. Journal of Urology. 205 (2), 595-602 (2021).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved