Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presented here is a simple protocol for the directed differentiation of hemogenic endothelial cells from human pluripotent stem cells in approximately 1 week.

Abstract

Blood vessels are ubiquitously distributed within all tissues of the body and perform diverse functions. Thus, derivation of mature vascular endothelial cells, which line blood vessel lumens, from human pluripotent stem cells is crucial for a multitude of tissue engineering and regeneration applications. In vivo, primordial endothelial cells are derived from the mesodermal lineage and are specified toward specific subtypes, including arterial, venous, capillary, hemogenic, and lymphatic. Hemogenic endothelial cells are of particular interest because, during development, they give rise to hematopoietic stem and progenitor cells, which then generate all blood lineages throughout life. Thus, creating a system to generate hemogenic endothelial cells in vitro would provide an opportunity to study endothelial-to-hematopoietic transition, and may lead to ex vivo production of human blood products and reduced reliance on human donors. While several protocols exist for the derivation of progenitor and primordial endothelial cells, generation of well-characterized hemogenic endothelial cells from human stem cells has not been described. Here, a method for the derivation of hemogenic endothelial cells from human embryonic stem cells in approximately 1 week is presented: a differentiation protocol with primitive streak cells formed in response to GSK3β inhibitor (CHIR99021), then mesoderm lineage induction mediated by bFGF, followed by primordial endothelial cell development promoted by BMP4 and VEGF-A, and finally hemogenic endothelial cell specification induced by retinoic acid. This protocol yields a well-defined population of hemogenic endothelial cells that can be used to further understand their molecular regulation and endothelial-to-hematopoietic transition, which has the potential to be applied to downstream therapeutic applications.

Introduction

Endothelial cells (ECs) are a heterogeneous population of cells that perform multiple functions throughout the human body and in engineered tissues. In addition to supporting and regulating other cell types (i.e., cardiomyocytes1, osteoblastic cells2), these functions include forming a selective barrier between blood and tissues and assisting in tissue formation3. Differentiation of mature ECs during normal development requires diverse signaling pathways. Primordial ECs are derived from mesoderm progenitors, and are then specified toward mature arterial, venous, capillary and lymphatic phenotypes<....

Protocol

1. Reagents and reagent preparation

NOTE: A list of reagents is provided in Table of Materials.

  1. Obtain the human pluripotent stem cell lines: H1-hESC, H9-Fucci-hESC.
    NOTE: The generation of hemogenic ECs may be more efficient in the H1 cell line.
  2. Prepare matrix protein stocks: Aliquot the matrix protein into pre-chilled 1.5 mL tubes (on ice) so that each tube contains 1 mg of matrix protein. 1 mg of matrix protein is enough to coat all wells of two.......

Representative Results

A schematic outlining the specification of primordial ECs and hemogenic ECs from hESCs, and a representative image of cells 24 h after plating are shown in Figure 1. Following specification, primordial ECs and hemogenic ECs are FACS purified on days 5 and 8, respectively. Primordial ECs are defined as CD31+ CD45- and hemogenic ECs are defined as CD31+ KDR+ c-Kit+ CD34+ VE-Cadherin- CD45-. A representative.......

Discussion

Herein, the steps for producing hemogenic endothelial cells from human embryonic stem cells in approximately 1 week using a murine feeder- and serum-free 2D culture system (Figure 1) are outlined. This protocol expands on a method described by Sriram et al. (2015) to obtain primordial ECs38. The primordial nature and specification potential of the CD31+ CD45- ECs is demonstrated by culturing these cells on DLL4-coated plates and observing gene ex.......

Acknowledgements

This work was partially supported by NIH grants HL128064 and U2EB017103. Further support was provided by CT Innovations 15-RMB-YALE-04 grant.

....

Materials

NameCompanyCatalog NumberComments
15 cm dishesCorning430599tissue culture treated
35 mm dishesCorning430165tissue culture treated
6-well platesCorning3516tissue culture treated
Antimicrobial reagent
Brand Name: Normocin
Invitrogenant-nr-1
bFGFR&D systems233-FB-025use at 50 ng/mL
BMP4BioLegend595202use at 25 ng/mL
Bovine Serum Albumin (BSA)Fisher ScientificBP1600-1
Cell Detatchment Solution
Brand Name: vAccutase
Stemcell Technologies7920
Dimethyl Sulfoxide (DMSO)Sigma AldrichD2650-100mL
DispaseStemcell Technologies7913
DLL4R&D systems1506-D4/CFrecombinant human; use at 10 μg/mL
DMEM:F12Gibco11320-033
Dulbecco's Phosphate Buffered Saline (PBS)Gibco14190144
Endothelial cell growth medium
Brand Name: EGM-2 Endothelial Cell Growth Medium-2 BulletKit (EGM-2)
LonzaCC-3162
FACS tubesCorning352235polystyrene round bottom with filter cap
Fetal Bovine Serum (FBS)Gemini Bio100-106
FibronectinThermoFisher Scientific33016015use at 4 mg/cm2
GSK3i/CHIR99021Stemgent04-0004-0210 mM stock; use at 5 μM
Hanks Balanced Salt Solution (HBSS)Gibco14175-095
Hydrochloric Acid (HCl)Fisher ScientificA144S-500
Matrix protein 
Brand Name: Matrigel
Corning356230Growth factor reduced. Refer to the Certificate of Analysis for the lot to determine the protein (Matrigel) concentration. This concentration is required to calculate the volume of Matrigel that contains 1 mg of protein.
Methylcellulose-based medium
Brand Name: MethoCult H4435 Enriched
Stemcell Technologies4435
Pluripotent stem cell differentiation medium
Brand Name: STEMdiff APEL 2
Stemcell Technologies5270
Pluripotent stem cells: H1, H9, H9-FUCCIWiCellWA09 (H9), WA01 (H1)human; H9-FUCCI were obtained from Dr. Ludovic Vallier's lab at Cambridge Stem Cell Institute
Protein-Free Hybridoma Medium (PFMH)Gibco12040077
Retinoic AcidSigma AldrichR2625-50mguse at 0.5 μM
Reverse transcription master mix
Brand Name: iScript Reverse Transcription Supermix
BioRad1708840
RNA extraction kit
Brand Name: RNeasy Mini Kit
Qiagen74104
Sodium Hydroxide (NaOH)Fisher ScientificSS255-1
Stem cell growth medium
Brand Name: mTeSR1
Stemcell Technologies85850
SYBR Green master mix
Brand Name: iTaq Universal SYBR Green Master Mix
BioRad1725121
Trypsin-EDTAGibco252999560.25%
VEGF165 (VEGF-A)PeproTech100-20use at 50 ng/mL
α-CD31-FITCBioLegend3031042 μg/mL*
α-CD34-Pacific BlueBioLegend3435122 μg/mL*
α-CD45-APC/Cy7BioLegend3040142 μg/mL*
α-c-Kit-APCBioLegend3132062 μg/mL*
α-Flk-1-PE/Cy7BioLegend3599112 μg/mL*
α-VE-Cadherin-PEBioLegend3485062 μg/mL*
* Antibody fluorescent conjugates should be optimized based on the cell sorter used. Presented here are the final concentrations utilized in this study.

References

  1. Giacomelli, E., et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development. 144 (6), 1008-1017 (2017).
  2. Wu, J., Wu, Z., Xue, Z., Li, H., Liu, J.

Explore More Articles

Hemogenic Endothelial CellsHuman Pluripotent Stem CellsDirected DifferentiationFACSCD45CD31VE cadherinC KitCD34KDRMethylcelluloseColony Forming UnitBlast Forming UnitHematopoietic Progenitor Cells

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved