JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Isolation of Mouse Interstitial Valve Cells to Study the Calcification of the Aortic Valve In Vitro

Published: May 10th, 2021

DOI:

10.3791/62419

1Cardiovascular Research Center, The Icahn School of Medicine at Mount Sinai, 2Diabetes, Obesity and Metabolism Institute, Department of Medicine, The Icahn School of Medicine at Mount Sinai, 3Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai

Abstract

The calcification of aortic valve cells is the hallmark of aortic stenosis and is associated with valve cusp fibrosis. Valve interstitial cells (VICs) play an important role in the calcification process in aortic stenosis through the activation of their dedifferentiation program to osteoblast-like cells. Mouse VICs are a good in vitro tool for the elucidation of the signaling pathways driving the mineralization of the aortic valve cell. The method described herein, successfully used by these authors, explains how to obtain freshly isolated cells. A two-step collagenase procedure was performed with 1 mg/mL and 4.5 mg/mL. The first step is crucial to remove the endothelial cell layer and avoid any contamination. The second collagenase incubation is to facilitate the migration of VICs from the tissue to the plate. In addition, an immunofluorescence staining procedure for the phenotype characterization of the isolated mouse valve cells is discussed. Furthermore, the calcification assay was performed in vitro by using the calcium reagent measurement procedure and alizarin red staining. The use of mouse valve cell primary culture is essential for testing new pharmacological targets to inhibit cell mineralization in vitro.

Explore More Videos

Keywords Mouse Interstitial Valve Cells

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved