A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes the collection of human aortic valves extracted during surgical aortic valve replacement procedures or from cadaveric tissue, and the subsequent isolation, expansion, and characterization of patient specific primary valve endothelial and interstitial cells. Included are important details regarding the processes needed to ensure cell viability and phenotype specificity.
Calcific aortic valve disease (CAVD) is present in nearly a third of the elderly population. Thickening, stiffening, and calcification of the aortic valve causes aortic stenosis and contributes to heart failure and stroke. Disease pathogenesis is multifactorial, and stresses such as inflammation, extracellular matrix remodeling, turbulent flow, and mechanical stress and strain contribute to the osteogenic differentiation of valve endothelial and valve interstitial cells. However, the precise initiating factors that drive the osteogenic transition of a healthy cell into a calcifying cell are not fully defined. Further, the only current therapy for CAVD-induced aortic stenosis is aortic valve replacement, whereby the native valve is removed (surgical aortic valve replacement, SAVR) or a fully collapsible replacement valve is inserted via a catheter (transcatheter aortic valve replacement, TAVR). These surgical procedures come at a high cost and with serious risks; thus, identifying novel therapeutic targets for drug discovery is imperative. To that end, the present study develops a workflow where surgically removed tissues from patients and donor cadaver tissues are used to create patient-specific primary lines of valvular cells for in vitro disease modeling. This protocol introduces the utilization of a cold storage solution, commonly utilized in organ transplant, to reduce the damage caused by the often-lengthy procurement time between tissue excision and laboratory processing with the benefit of greatly stabilizing cells of the excised tissue. The results of the present study demonstrate that isolated valve cells retain their proliferative capacity and endothelial and interstitial phenotypes in culture upwards of several days after valve removal from the donor. Using these materials allows for the collection of control and CAVD cells, from which both control and disease cell lines are established.
Calcific aortic valve disease (CAVD) is a chronic pathology characterized by inflammation, fibrosis, and macrocalcification of aortic valve leaflets. Progressive remodeling and calcification of the leaflets (termed aortic sclerosis) can lead to the obstruction of blood flow (aortic stenosis) which contributes to stroke and leads to heart failure. Currently the only treatment for CAVD is surgical or transcatheter aortic valve replacement (SAVR and TAVR, respectively). There is no non-surgical option to halt or reverse CAVD progression, and without valve replacement, mortality rates approach 50% within 2-3 years1,2,3. Defining the underlying mechanisms driving this pathology will identify potential novel therapeutic approaches.
In a healthy adult, aortic valve leaflets are approximately one millimeter thick, and their main function is to maintain the unidirectional flow of blood out of the left ventricle4. Each of the three leaflets is comprised of a layer of valve endothelial cells (VECs) that lines the outer surface of the leaflet and functions as a barrier. VECs maintain valve homeostasis by regulating permeability, inflammatory cell adhesion, and paracrine signaling5,6,7. Valve interstitial cells (VICs) comprise the majority of cells within the valve leaflet8. VICs are arranged in three distinctive layers in the leaflet. These layers are known as the ventricularis, the spongiosa, and the fibrosa9. The ventricularis faces the left ventricle and contains collagen and elastin fibers. The middle layer, the spongiosa, contains high proteoglycan content that provides shear flexibility during the cardiac cycle. The outer fibrosa layer is located close to the outflow surface on the aortic side and is rich in Type I and Type III fibrillar collagen which provide strength to maintain coaptation during diastole10,11,12. VICs reside in a quiescent state, however, factors such as inflammation, remodeling of the extracellular matrix (ECM), and mechanical stress may disrupt VIC homeostasis8,9,13,14,15,16. With loss of homeostasis, VICs activate and acquire a myofibroblast-like phenotype capable of proliferation, contraction, and secretion of proteins that remodel the extracellular millieu17. Activated VICs can transition into calcifying cells which is reminiscent of the differentiation of a mesenchymal stem cell (MSC) into an osteoblast15,17,18,19,20,21,22,23,24,25.
Calcification appears to initiate in the collagen-rich fibrosa layer from contributions of both VECs and VICs but expands and invades the other layers of the leaflet8. Thus, it is clear that both VECs and VICs respond to stimuli to upregulate the expression of osteogenic genes, however, the precise events driving the activation of osteogenic genes, as well as the complex interplay between the cells and the extracellular matrix of the leaflet, remain ill-defined. Murine models are not an ideal source to study non-genetic drivers of CAVD pathogenesis, as mice do not develop CAVD de novo26,27, hence the use of primary human tissues and the primary cell lines isolated from these tissues is necessary. In particular, obtaining these cells in high numbers and good quality is imperative, as the field of 3D cell cultures and organoid modeling is expanding and is likely to become an ex vivo human-based alternative to murine models.
The purpose of the present method is to share a workflow that has established the conditions to efficiently isolate and grow VECs and VICs obtained from surgically removed valves from human donors. Previous studies have shown successful isolation of VECs and VICs from porcine28 and murine valves29, to our knowledge this is the first to describe the isolation of these cells in human tissues. The protocol described here is applicable to human excised valves and greatly circumvents and improves the damage caused by the often-lengthy procurement time between tissue excision and laboratory processing by introducing the utilization of a cold storage solution, a buffered solution clinically utilized in organ transplants that greatly stabilizes cells of the excised tissue. The protocol described here also shows how to determine cell phenotype and guarantee high efficiency of cell survival with minimal cell cross-contamination.
All patient samples are collected from individuals enrolled in studies approved by the institutional review board of the University of Pittsburgh in accordance with the Declaration of Helsinki. Cadaveric tissues obtained via the Center for Organ Recovery and Education (CORE) were approved by the University of Pittsburgh Committee for Oversight of Research and Clinical Training Involving Decedents (CORID).
1. Approval and safety
2. Logistics and preparation
3. Reagents preparation
4. Tissue preparation and processing
NOTE: Institutional approval for use of human tissues must be obtained prior to beginning work. While handling tissues, the following personal protective equipment (PPE) must be worn: a disposable liquid barrier wrap-around gown, or a dedicated button front lab coat with a liquid-barrier wrap around apron and disposable sleeve clovers; a full face shield, or safety glasses with a surgical mask; double gloves; close-toed shoes; and clothing to cover the legs. Comprehensive workflow diagrams of the tissue preparation for calcification assessment (Section 5) and cell isolation (Sections 6 and 7) are illustrated in Figure 1A,B respectively.
5. Von Kossa staining for calcium content
NOTE: This can be done well after cell isolation and line establishment but be sure to link the calcification level of the tissue to documents pertaining to the primary cell line established.
6. Valve Endothelial Cell (VEC) isolation, expansion, and confirmation
7. Valve Interstitial Cell (VIC) isolation, expansion, and storage
8. Long-term cell storage
The above protocol outlines the steps necessary for the handling of human valve tissues and the isolation and establishment of viable cell lines from these tissues. Leaflets of the aortic valve are processed for paraffin embedding, snap frozen for long term storage for biochemical or genetic analysis and digested for the isolation of VECs and VICs (Figure 1). While surgical specimens will likely have a clinical diagnosis of aortic stenosis and may exhibit heavy nodules of calcification that ...
Obtaining control and disease tissues from humans is critical for in vitro and ex vivo disease modeling; however, while one often speaks about the challenges of bridging the gap between bench to bedside, the reverse order - going from the surgical suite to the bench - is often just as daunting a gap. Essential for a basic scientist to obtain primary human tissue specimens is a collaboration with an invested surgeon scientist who has a team of nurses, surgical technicians, physician assistants, medical students and reside...
IS receives institutional research support from Atricure and Medtronic and serves as a consultant for Medtronic Vascular. None of these conflicts are related to this work. All other Authors have nothing to disclose.
We would like to thank Jason Dobbins for insightful discussion and critical reading of this manuscript. We would like to acknowledge the Center for Organ Recovery and Education for their help and support and thank tissue donors and their families for making this study possible. All patient samples are collected from individuals enrolled in studies approved by the institutional review board of the University of Pittsburgh in accordance with the Declaration of Helsinki. Cadaveric tissues obtained via the Center for Organ Recovery and Education (CORE) were approved by the University of Pittsburgh Committee for Oversight of Research and Clinical Training Involving Decedents (CORID).
Some figures created with Biorender.com.
CSH is supported by the National Heart, Lung, and Blood Institute K22 HL117917 and R01 HL142932, the American Heart Association 20IPA35260111.
Name | Company | Catalog Number | Comments |
0.45 μm filter | Thermo Scientific | 7211345 | Preparing plate with collagen coating |
10 cm cell culture plate | Greiner Bio-One | 664160 | Cell culture/cell line expansion |
10 mL serological pipet | Fisher | 14955234 | VEC/VIC isolation, cell culture, cell line expansion |
1000 μL filter tips | VWR | 76322-154 | Cell culture/cell line expansion |
10XL filter tips | VWR | 76322-132 | Cell culture/cell line expansion |
15 mL conical tubes | Thermo Scientific | 339650 | Tissue storage, VIC/VEC isolation |
16% paraformaldehyde aqueous solution | Electron Microscopy Sciences | 15710S | Tissue and cell fixative |
190 proof ethanol | Decon | 2801 | Disinfection |
1x DPBS: no calcium, no magnesium | Gibco | 14190250 | Saline solution. VIC/VEC isolation |
1x PBS | Fisher | BP2944100 | Saline solution. Tissue preparation, VIC/VEC isolation |
20 μL filter tips | VWR | 76322-134 | Cell culture/cell line expansion |
200 proof ethanol | Decon | 2701 | Deparaffinizing tissue samples |
2-propanol | Fisher | A416P 4 | Making collagen coated plates |
5 mL serological pipet | Fisher | 14955233 | VEC/VIC isolation, cell culture, cell line expansion |
50 mL conical tubes | Thermo Scientific | 339652 | Tissue storage, VIC/VEC isolation |
60 mm dish | GenClone | 25-260 | VEC isolation |
6-well cell culture plate | Corning | 3516 | Cell culture/cell line expansion |
Acetic acid, glacial | Fisher | BP2401 500 | Making collagen coated plates |
AlexaFluor 488 phalloidin | Invitrogen | A12379 | Fluorescent f-actin counterstain |
Belzer UW Cold Storage Transplant Solution | Bridge to Life | BUW0011L | Tissue storage solution |
Bovine Serum Albumin, Fraction V - Fatty Acid Free 25g | Bioworld | 220700233 | VEC confirmation with CD31+ Dynabeads |
Calponin 1 antibody | Abcam | ab46794 | Primary antibody (VIC positive stain) |
CD31 (PECAM-1) (89C2) | Cell Signaling | 3528 | Primary antibody (VEC positive stain) |
CD31+ Dynabeads | Invitrogen | 11155D | VEC confirmation with CD31+ Dynabeads |
CDH5 | Cell Signaling | 2500 | Primary antibody (VEC positive stain) |
Cell strainer with 0.70 μm pores | Corning | 431751 | VIC isolation |
Collagen 1, rat tail protein | Gibco | A1048301 | Making collagen coated plates |
Collagenase II | Worthington Biochemical Corporation | LS004176 | Tissue digestion. Tissue preparation, VIC/VEC isolation |
Conflikt Ready-to-use Disinfectant Spray | Decon | 4101 | Disinfection |
Countess II Automated Cell Counter | Invitrogen | A27977 | Automated cell counter |
Countess II reusable slide coverslips | Invitrogen | 2026h | Automated cell counter required slide cover |
Coverslips | Fisher | 125485E | Mounting valve samples |
Cryogenic vials | Olympus Plastics | 24-202 | Freezing cells/tissue samples |
Disinfecting Bleach with CLOROMAX - Concentrated Formula | Clorox | N/A | Disinfection |
DMEM | Gibco | 10569044 | Growth media. VIC expansion |
EBM - Endothelial Cell Medium, Basal Medium, Phenol Red free 500 | Lonza Walkersville | CC3129 | Growth media. VEC expansion |
EGM-2 Endothelial Cell Medium-2 - 1 kit SingleQuot Kit | Lonza Walkersville | CC4176 | Growth media supplement. VEC expansion |
EVOS FL Microscope | Life Technologies | Model Number: AME3300 | Fluorescent imaging |
EVOS XL Microscope | Life Technologies | AMEX1000 | Visualizing cells during cell line expansion |
Fetal Bovine Serum - Premium Select | R&D Systems | S11550 | VIC expansion |
Fine scissors | Fine Science Tools | 14088-10 | Tissue preparation, VIC/VEC isolation |
Fisherbrand Cell Scrapers | Fisher | 08-100-241 | VIC expansion |
Fungizone | Gibco | 15290-026 | Antifungal: Tissue preparation, VIC/VEC isolation |
Gentamicin | Gibco | 15710-064 | Antibiotic: Tissue preparation, VIC/VEC isolation |
Glass slides | Globe Scientific Inc | 1358L | mounting valve samples |
Goat anti-Mouse 488 | Invitrogen | A11001 | Fluorescent secondary Antibody |
Goat anti-Mouse 594 | Invitrogen | A11005 | Fluorescent secondary Antibody |
Goat anti-Rabbit 488 | Invitrogen | A11008 | Fluorescent secondary Antibody |
Goat anti-Rabbit 594 | Invitrogen | A11012 | Fluorescent secondary Antibody |
Invitrogen Countess II FL Reusable Slide | Invitrogen | A25750 | Automated cell counter required slide |
Invitrogen NucBlue Fixed Cell ReadyProbes Reagent (DAPI) | Invitrogen | R37606 | Fluorescent nucleus counterstain |
LM-HyCryo-STEM - 2X Cryopreservation media for stem cells | HyClone Laboratories, Inc. | SR30002 | Frozen cell storage |
Mounting Medium | Fisher Chemical Permount | SP15-100 | Mounting valve samples |
Mr. Frosty freezing container | Nalgene | 51000001 | Container for controlled sample freezing |
Mycoplasma-ExS Spray | PromoCell | PK-CC91-5051 | Disinfection |
Penicillin-Streptomycin | Gibco | 15140163 | Antibiotic. VIC expansion |
Plasmocin | Invivogen | ANTMPT | Anti-mycoplasma. VIC/VEC isolation and expansion |
SM22a antibody | Abcam | ab14106 | Primary antibody (VIC positive stain) |
Sstandard pattern scissors | Fine Science Tools | 14001-14 | Tissue preparation, VIC/VEC isolation |
Sterile cotton swab | Puritan | 25806 10WC | VEC isolation |
Swingsette human tissue cassette | Simport Scientific | M515-2 | Tissue embedding container |
Taylor Forceps (17cm) | Fine Science Tools | 11016-17 | Tissue preparation, VIC/VEC isolation |
Trypan Blue Solution, 0.4% | Gibco | 15250061 | cell counting solution |
TrypLE Express Enzyme | Gibco | 12604021 | Splitting VIC/VECs |
Von Kossa kit | Polysciences | 246331 | Staining paraffin sections of tissues for calcification |
von Willebrand factor antibody | Abcam | ab68545 | Primary antibody (VEC positive stain) |
Xylenes | Fisher Chemical | X3S-4 | Deparaffinizing tissue samples |
αSMA antibody | Abcam | ab7817 | Primary antibody (VIC positive stain) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved