A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol shows how to acquire neuromelanin-sensitive magnetic resonance imaging data of the substantia nigra.
The dopaminergic system plays a crucial role in healthy cognition (e.g., reward learning and uncertainty) and neuropsychiatric disorders (e.g., Parkinson's disease and schizophrenia). Neuromelanin is a byproduct of dopamine synthesis that accumulates in dopaminergic neurons of the substantia nigra. Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) is a noninvasive method for measuring neuromelanin in those dopaminergic neurons, providing a direct measure of dopaminergic cell loss in the substantia nigra and a proxy measure of dopamine function. Although NM-MRI has been shown to be useful for studying various neuropsychiatric disorders, it is challenged by a limited field-of-view in the inferior-superior direction resulting in the potential loss of data from the accidental exclusion of part of the substantia nigra. In addition, the field is lacking a standardized protocol for the acquisition of NM-MRI data, a critical step in facilitating large-scale multisite studies and translation into the clinic. This protocol describes a step-by-step NM-MRI volume placement procedure and online quality control checks to ensure the acquisition of good-quality data covering the entire substantia nigra.
Neuromelanin (NM) is a dark pigment found in dopaminergic neurons of the substantia nigra (SN) and noradrenergic neurons of the locus coeruleus (LC)1,2. NM is synthesized by the iron-dependent oxidation of cytosolic dopamine and norepinephrine and is stored in autophagic vacuoles in the soma3. It first appears in humans around 2-3 years of age and accumulates with age1,4,5.
Within the NM-containing vacuoles of SN and LC neurons, NM forms complexes with iron. These NM-iron complexes are paramagnetic, allowing for noninvasive visualization of NM using magnetic resonance imaging (MRI)6,7. MRI scans that can visualize NM are known as NM-sensitive MRI (NM-MRI) and use either direct or indirect magnetization transfer effects to provide contrast between regions with high NM concentration (e.g., the SN) and the surrounding white matter8,9.
Magnetization transfer contrast is the result of the interaction between macromolecular-bound water protons (which are saturated by the magnetization transfer pulses) and the surrounding free water protons. In NM-MRI, it is believed that the paramagnetic nature of NM-iron complexes shortens the T1 of the surrounding free water protons, resulting in reduced magnetization-transfer effects so that regions with higher NM concentration appear hyperintense on NM-MRI scans10. Conversely, the white matter surrounding the SN has a high macromolecular content, resulting in large magnetization-transfer effects so that these regions appear hypointense on NM-MRI scans, thus providing high contrast between the SN and surrounding white matter.
In the SN, NM-MRI can provide a marker of dopaminergic cell loss11 and dopamine system function12. These two processes are relevant for several neuropsychiatric disorders and are supported by a vast body of clinical and preclinical work. For example, abnormalities in dopamine function have been widely observed in schizophrenia; in vivo studies using positron emission tomography (PET) have shown increased striatal dopamine release13,14,15,16 and increased dopamine synthesis capacity17,18,19,20,21,22. Furthermore, post-mortem studies have shown that patients with schizophrenia have increased levels of tyrosine hydroxylase—the rate-limiting enzyme involved in dopamine synthesis—in the basal ganglia23 and SN24,25.
Several studies have investigated patterns of dopaminergic cell loss, particularly in Parkinson's disease. Post-mortem studies have revealed that the pigmented dopaminergic neurons of the SN are the primary site of neurodegeneration in Parkinson's disease26,27, and that, while SN cell loss in Parkinson's disease is not correlated with cell loss in normal aging28, it is correlated with the duration of the disease29. Unlike most methods for investigating the dopaminergic system, the non-invasiveness, cost-effectiveness, and lack of ionizing radiation make NM-MRI a versatile biomarker30.
The NM-MRI protocol described in this paper was developed to increase both within-subject and across-subject reproducibility of NM-MRI. This protocol ensures full coverage of the SN despite the limited coverage of NM-MRI scans in the inferior-superior direction. The protocol makes use of sagittal, coronal, and axial three-dimensional (3D) T1-weighted (T1w) images, and the steps should be followed to achieve proper slice stack placement. The protocol outlined in this paper has been utilized in multiple studies31,32 and was extensively tested. Wengler et al. completed a study of the reliability of this protocol in which NM-MRI images were acquired twice in each participant across multiple days32. Intra-class correlation coefficients demonstrated excellent test-retest reliability of this method for region of interest (ROI)-based and voxelwise analyses, as well as high contrast in the images.
NOTE: The research conducted to develop this protocol was performed in compliance with New York State Psychiatric Institute Institutional Review Board guidelines (IRB #7655). One subject was scanned for recording the protocol video, and written informed consent was obtained. Refer to the Table of Materials for details about the MRI scanner used in this protocol.
1. MRI acquisition parameters
2. Placement of NM-MRI volume
Figure 1: Images displaying the step-by-step NM-MRI volume placement procedure. Yellow lines indicate the location of the slices used for volume placement as described in the protocol. (A) First, the sagittal image with the greatest separation between the midbrain and thalamus is identified (step 2.3 of the protocol). (B) Second, using the image from A, the coronal plane delineating the most anterior aspect of the midbrain is identified (step 2.4). (C) Third, on the coronal image from the plane identified in B, the axial plane delineating the inferior aspect of the third ventricle is identified (step 2.5). (D) Fourth, the axial plane identified in C is displayed on the sagittal image from A (step 2.6). (E) Fifth, the axial plane from D is shifted 3 mm in the superior direction, and this plane indicates the superior boundary of the NM-MRI volume (step 2.7). (F) The final NM-MRI volume placement where the coronal image corresponds to C, the sagittal image corresponds to A, and the axial image corresponds to the axial plane in E. The NM-MRI volume is aligned to the brain midline in the coronal and axial images and the AC-PC line in the sagittal image (step 2.8). Part of this figure has been reprinted with permission from Elsevier from 30. Abbreviations: NM-MRI = neuromelanin-sensitive magnetic resonance imaging; AC-PC = anterior commissure-posterior commissure. Please click here to view a larger version of this figure.
3. Quality control checks
Figure 2: Example of an NM-MRI acquisition that failed the first quality control check (step 3.1 of the protocol). Each of the 20 NM-MRI slices displayed from most inferior (top left image) to most superior (bottom right image); the image window/level was set to exaggerate the contrast between the substantia nigra and crus cerebri. The orange arrows in slices 15-19 show the location of the substantia nigra in those slices. The red arrow in the most superior slice (slice 20) shows that the substantia nigra is still visible in this slice, and thus, the acquisition fails the quality check. Abbreviation: NM-MRI = neuromelanin-sensitive magnetic resonance imaging. Please click here to view a larger version of this figure.
Figure 3: Examples of NM-MRI acquisitions that failed the second quality control check (step 3.2 of the protocol). Only one representative slice is shown for each case. (A) An NM-MRI acquisition that fails the quality control check due to a blood vessel artifact (red arrows) that is the result of the blood vessel identified by the blue arrows. (B) An NM-MRI acquisition that fails the quality control check due to motion artifacts (red arrows). (C) An NM-MRI acquisition that fails the quality control check due to an ambiguous artifact (red arrows). Abbreviation: NM-MRI = neuromelanin-sensitive magnetic resonance imaging. Please click here to view a larger version of this figure.
Figure 4 shows the representative results from a 28-year-old female participant with no psychiatric or neurological disorders. The NM-MRI protocol ensures complete coverage of the SN, achieved by following step 2 of the protocol outlined in Figure 1, and satisfactory NM-MRI images by following step 3 of the protocol. Excellent contrast between the SN and neighboring white matter regions with negligible NM concentration (i.e., crus cerebri) can be seen. Thes...
The dopaminergic system plays a crucial role in healthy cognition and neuropsychiatric disorders. The development of noninvasive methods that can be used to repeatedly investigate the dopaminergic system in vivo is critical for the development of clinically meaningful biomarkers. The protocol described here supplies step-by-step instructions for acquiring good-quality NM-MRI images of the SN, including placement of the NM-MRI volume and quality control checks to ensure usable data.
Ev...
Drs Horga and Wengler each reported having patents for analysis and use of neuromelanin imaging in central nervous system disorders (WO2021034770A1, WO2020077098A1), licensed to Terran Biosciences, but have received no royalties.
Dr. Horga received support from the NIMH (R01-MH114965, R01-MH117323). Dr. Wengler received support from NIMH (F32-MH125540).
Name | Company | Catalog Number | Comments |
3T Magnetic Resonance Imaging | General Electric | GE SIGNA Premier with 48-channel head coil |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ISSN 1940-087X
Copyright © 2025 MyJoVE Corporation. All rights reserved
We use cookies to enhance your experience on our website.
By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.