Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the preparation of organotypic slice cultures (OTSCs). This technique facilitates the ex vivo cultivation of intact multicellular tissue. OTSCs can be used immediately to test for their respective response to drugs in a multicellular environment.

Abstract

Realistic preclinical models of primary pancreatic cancer and metastasis are urgently needed to test the therapy response ex vivo and facilitate personalized patient treatment. However, the absence of tumor-specific microenvironment in currently used models, e.g., patient-derived cell lines and xenografts, only allows limited predictive insights. Organotypic slice cultures (OTSCs) comprise intact multicellular tissue, which can be rapidly used for the spatially resolved drug response testing.

This protocol describes the generation and cultivation of viable tumor slices of pancreatic cancer and its metastasis. Briefly, tissue is casted in low melt agarose and stored in cold isotonic buffer. Next, tissue slices of 300 µm thickness are generated with a vibratome. After preparation, slices are cultured at an air-liquid interface using cell culture inserts and an appropriate cultivation medium. During cultivation, changes in cell differentiation and viability can be monitored. Additionally, this technique enables the application of treatment to viable human tumor tissue ex vivo and subsequent downstream analyses, such as transcriptome and proteome profiling.

OTSCs provide a unique opportunity to test the individual treatment response ex vivo and identify individual transcriptomic and proteomic profiles associated with the respective response of distinct slices of a tumor. OTSCs can be further explored to identify therapeutic strategies to personalize treatment of primary pancreatic cancer and metastasis.

Introduction

Existing preclinical models of pancreatic ductal adenocarcinoma (PDAC) and respective metastases are poor predictors of response to treatment in patients which is a major drawback in drug development and the identification of predictive biomarkers1. Although models such as patient-derived organoids and patient-derived xenografts are promising, their use remains limited2. Major limitations of these in vitro models are the lack of the tumor microenvironment and xenografting in non-human immunocompromised species. Especially in PDAC and its metastases, the tumor microenvironment has considerably gained interest ove....

Protocol

Tissue specimens were collected and processed after approval by the local ethics committee of the University of Lübeck (# 16-281).

1. Fresh tissue collection and handling

NOTE: Every unfixed human tissue specimen should be handled with caution to prevent the risk of infection from blood-borne pathogens. All patients should be tested to be negative for HIV, HBV, and HCV prior to tissue processing. Wear a protective coat and handle human tissue specimens with glove.......

Representative Results

Figure 1 provides an overview of the workflow to culture OTSCs from fresh, unfrozen tumor tissue. Specimens of primary PDACs and metastases were collected directly after surgical resection and stored overnight on wet ice at 4 °C in the tissue storage solution. The specimens were processed, and slices were cultured as described in the protocol. The macroscopic morphology of each OTSC did not change grossly during cultivation. However, the size of the surface area of the OTSCs decrea.......

Discussion

OTSCs of fresh tumor samples are a close approximation of the tumor in situ. They maintain their baseline morphology, proliferative activity, and microenvironment during the cultivation for a defined, tissue-dependent period11,12,13. This technique enables the immediate application of treatment to viable human tumor tissue ex vivo and subsequent downstream analyses, such as profiling of the transcriptome and pr.......

Acknowledgements

R. Braun was supported by the Clinician Scientist School Lübeck (DFG #413535489) and the Junior Funding Program of the University of Lübeck.

....

Materials

NameCompanyCatalog NumberComments
Advanced DMEM/F-12 MediumGibco12634028
Agarose Low MeltRoth6351.28% in Ringer solution
Antibody Diluent, Background ReducingDakoS3022
AquaTexMerck108562
Bioethanol (99%, denatured)CHEMSolute2,21,19,010
Citric Acid monohydrateSigma AldrichC7129
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAbCell Signalling Technology96641:400 dilution
Derby Extra Double Edge Safety Razor BladesDerby Tokai
Embedding cassettesRothH579.1
Eosin Y-solution 0,5% aqueousMerck10,98,44,100
Eukitt Quick hardening mounting mediumSigma-Aldrich3989
Fetal bovine serumGibco10270106
Formaldehyde solution 4,5%, bufferedBüfa ChemikalienB211101000
Hem alum solution acid acc. to MayerRothT865
Human EGFMilteniy Biotec130-097-794
HydrocortisoneSigma Aldrich (Merck)H0888
Hydrogen peroxide 30%Merck1,08,59,71,000
Insulin humanSigma Aldrich (Merck)12643
Liquid DAB+ Substrate Chromogen SystemDakoK3468
MACS Tissue Storage SolutionMilteniy Biotech130-100-008
MethanolMerck############
Microscope Slides Superfrost PlusThermo ScientificJ1800AMNZ
Millicell Cell Culture Insert, 30 mm, hydrophilic PTFE, 0.4 µmMillipore (Merck)PICM0RG50
Monoclonal mouse anti-human  Cytokeratin 7 (Clone OV-TL 12/30)DakoM70181:200 dilution
Monoclonal mouse anti-human Ki67 Clone MIB-1DakoM72401:200 dilution
Monoclonal mouse Anti-vimentin (Clone V9)DakoM07251:200 dilution
Negative control Mouse IgG2aDakoX09431:200 dilution
Negative control Mouse IgG1DakoX093101-21:200 dilution
Paraffin (melting temperature 56°- 58°)Merck10,73,37,100
Penicillin-Streptomycin (10.000 U/ml)Gibco15140122
PBS pH 7,4 (1x) Flow Cytometry GradeGibcoA12860301
Resazurin sodium salt; 10 mg/ml in PBSSigma AldrichR70171:250 dilution
Ringer's solutionFresenius Kabi2610813
RPMI-1640 MediumSigma Aldrich (Merck)R8758
Tissue culture testplate 6TPP92006
Triton X-100Sigma Aldrich9002-93-1
VECTASTAIN Elite ABC-Peroxidase KitVector LaboratoriesPK-6200
Xylene (extra pure)J.T.Baker8,11,85,000
Equipment
ClarioStar Microplate ReaderBMG Labtech
Paraffin Embedding Center E61110Leica
Rotary Microtome Microm HM355SThermo Scientific
Section Transfer System Microm STSThermo Scientific
VT 1200S VibratomLeica

References

  1. Nevala-Plagemann, C., Hidalgo, M., Garrido-Laguna, I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nature Reviews. Clinical Oncology. 17 (2), 108-123 (2020).
  2. Tiriac, H., et al.

Explore More Articles

Organotypic Slice CulturesTumor MicroenvironmentPrimary Pancreatic CancerMetastasisPreclinical ModelsPersonalized TreatmentEx Vivo Drug Response TestingTranscriptomeProteome

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved