JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

In Vitro Three-Dimensional Sprouting Assay of Angiogenesis Using Mouse Embryonic Stem Cells for Vascular Disease Modeling and Drug Testing

Published: May 11th, 2021

DOI:

10.3791/62554

1Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2Institute Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, 3MEMOLIFE Laboratory of Excellence and PSL Research University

Recent advances in induced pluripotent stem cells (iPSC) and gene editing technologies enable the development of novel human cell-based disease models for phenotypic drug discovery (PDD) programs. Although these novel devices could predict the safety and efficacy of investigational drugs in humans more accurately, their development to the clinic still strongly rely on mammalian data, notably the use of mouse disease models. In parallel to human organoid or organ-on-chip disease models, the development of relevant in vitro mouse models is therefore an unmet need for evaluating direct drug efficacy and safety comparisons between species and in vivo and in vitro conditions. Here, a vascular sprouting assay that utilizes mouse embryonic stem cells differentiated into embryoid bodies (EBs) is described. Vascularized EBs cultured onto 3D-collagen gel develop new blood vessels that expand, a process called sprouting angiogenesis. This model recapitulates key features of in vivo sprouting angiogenesis-formation of blood vessels from a pre-existing vascular network-including endothelial tip cell selection, endothelial cell migration and proliferation, cell guidance, tube formation, and mural cell recruitment. It is amenable to screening for drugs and genes modulating angiogenesis and shows similarities with recently described three-dimensional (3D) vascular assays based on human iPSC technologies.

Tags

Keywords In Vitro

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved