Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We modified the Marmarou weight drop model for adult zebrafish to examine a breadth of pathologies following blunt-force traumatic brain injury (TBI) and the mechanisms underlying subsequent neuronal regeneration. This blunt-force TBI model is scalable, induces a mild, moderate, or severe TBI, and recapitulates injury heterogeneity observed in human TBI.

Abstract

Blunt-force traumatic brain injuries (TBI) are the most common form of head trauma, which spans a range of severities and results in complex and heterogenous secondary effects. While there is no mechanism to replace or regenerate the lost neurons following a TBI in humans, zebrafish possess the ability to regenerate neurons throughout their body, including the brain. To examine the breadth of pathologies exhibited in zebrafish following a blunt-force TBI and to study the mechanisms underlying the subsequent neuronal regenerative response, we modified the commonly used rodent Marmarou weight drop for the use in adult zebrafish. Our simple blunt-force TBI model is scalable, inducing a mild, moderate, or severe TBI, and recapitulates many of the phenotypes observed following human TBI, such as contact- and post-traumatic seizures, edema, subdural and intracerebral hematomas, and cognitive impairments, each displayed in an injury severity-dependent manner. TBI sequelae, which begin to appear within minutes of the injury, subside and return to near undamaged control levels within 7 days post-injury. The regenerative process begins as early as 48 hours post-injury (hpi), with the peak cell proliferation observed by 60 hpi. Thus, our zebrafish blunt-force TBI model produces characteristic primary and secondary injury TBI pathologies similar to human TBI, which allows for investigating disease onset and progression, along with the mechanisms of neuronal regeneration that is unique to zebrafish.

Introduction

Traumatic brain injuries (TBIs) are a global health crisis and a leading cause of death and disability. In the United States, approximately 2.9 million people experience a TBI each year, and between 2006-2014 mortality due to TBI or TBI sequelae increased by over 50%1. However, TBIs vary in their etiology, pathology, and clinical presentation due largely in part to the mechanism of injury (MOI), which also influences treatment strategies and predicted prognosis2. Though TBIs can result from various MOI, they are predominately the result of either a penetrating or blunt-force trauma. Penetrating traumas represent a small ....

Protocol

Zebrafish were raised and maintained in the Notre Dame Zebrafish facility in the Freimann Life Sciences Center. The methods described in this manuscript were approved by the University of Notre Dame Animal Care and Use Committee.

1. Traumatic brain injury paradigm

  1. Add 1 mL of 2-phenoxyethanol to 1 L of system water (60 mg of Instant Ocean in 1 L of deionized RO water).
  2. Prepare an aerated recovery tank containing 2 L of system water at room temperature.
  3. Select th.......

Representative Results

Preparing the injury-induction rig allows for a rapid and simplistic means of delivering a scalable blunt-force TBI to adult zebrafish. The graded severity of the injury model provides several easily identifiable metrics of successful injury, though the vascular injury is one of the easiest and most prominent pathologies (Figure 3). The strain of fish used during the injury can make this indicator easier or harder to identify. When using wild-type AB fish(WTAB, <.......

Discussion

Investigations of neurotrauma and associated sequelae have long been centered on traditional non-regenerative rodent models20. Only recently have studies applied various forms of CNS damage to regenerative models9,11,13,14,21. Though insightful, these models are limited by either their use of an injury method uncommonly seen in the huma.......

Acknowledgements

The authors would like to thank the Hyde lab members for their thoughtful discussions, the Freimann Life Sciences Center technicians for zebrafish care and husbandry, and the University of Notre Dame Optical Microscopy Core/NDIIF for the use of instruments and their services. This work was supported by the Center for Zebrafish Research at the University of Notre Dame, the Center for Stem Cells and Regenerative Medicine at the University of Notre Dame, and grants from National Eye Institute of NIH R01-EY018417 (DRH), the National Science Foundation Graduate Research Fellowship Program (JTH), LTC Neil Hyland Fellowship of Notre Dame (JTH), Sentinels of Freedom Fellowshi....

Materials

NameCompanyCatalog NumberComments
2-phenoxyethanolSigma Alderich77699
#00 buckshotRemingtonRMS237703.3g weight for sTBI
#3 buckshotRemingtonRMS237761.5g weight for miTBI/moTBI
#5 Dumont forcepsWPI14098
5-ethynyl-2’-deoxyuridineLife TechnologiesA10044EdU
5ml glass vialVWR66011-063
Click-iT EdU Cell Proliferation KitLife TechnologiesC10340
CytoOne 12-well plateUSA ScientificCC7682-7512
Instant OceanInstant OceanSS15-10
Super frost postiviely charged slidesVWR48311-703
Super PAP Pen Liquid BlockerTed Pella22309
Tissue freezing mediumVWR15148-031

References

  1. Centers for Disease Control and Prevention. Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths-United States, 2014. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. , (2019).
  2. Galgano, M., et al.

Explore More Articles

ZebrafishBlunt force InjuryTraumatic Brain InjuryTBIModeling ClaySteel DiscBall BearingInjury SeverityDissectionOptic NerveParietal Plate

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved