Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Spatial distance is a key parameter in assessing hypoxia/reoxygenation injury in a co-culture model of separate endothelial and cardiomyocyte cell layers, suggesting, for the first time, that optimizing the co-culture spatial environment is necessary to provide a favorable in vitro model for testing the role of endothelial cells in cardiomyocyte protection.

Abstract

Ischemic heart disease is the leading cause of death and disability worldwide. Reperfusion causes additional injury beyond ischemia. Endothelial cells (ECs) can protect cardiomyocytes (CMs) from reperfusion injury through cell-cell interactions. Co-cultures can help investigate the role of cell-cell interactions. A mixed co-culture is the simplest approach but is limited as isolated treatments and downstream analyses of single cell types are not feasible. To investigate whether ECs can dose-dependently attenuate CM cell damage and whether this protection can be further optimized by varying the contact distance between the two cell lines, we used Mouse Primary Coronary Artery Endothelial Cells and Adult Mouse Cardiomyocytes to test three types of cell culture inserts which varied in their inter-cell layer distance at 0.5, 1.0, and 2.0 mm, respectively. In CMs-only, cellular injury as assessed by lactate dehydrogenase (LDH) release increased significantly during hypoxia and further upon reoxygenation when the distance was 2.0 mm compared to 0.5 and 1.0 mm. When ECs and CMs were in nearly direct contact (0.5 mm), there was only a mild attenuation of the reoxygenation injury of CMs following hypoxia. This attenuation was significantly increased when the spatial distance was 1.0 mm. With 2.0 mm distance, ECs attenuated CM injury during both hypoxia and hypoxia/reoxygenation, indicating that sufficient culture distancing is necessary for ECs to crosstalk with CMs, so that secreted signal molecules can circulate and fully stimulate protective pathways. Our findings suggest, for the first time, that optimizing the EC/CM co-culture spatial environment is necessary to provide a favorable in vitro model for testing the role of ECs in CM-protection against simulated ischemia/reperfusion injury. The goal of this report is to provide a step-by-step approach for investigators to use this important model to their advantage.

Introduction

Ischemic heart disease is the leading cause of death and disability worldwide1,2. However, the treatment process of reperfusion can itself cause cardiomyocyte death, known as myocardial ischemia/reperfusion (IR) injury, for which there is still no effective remedy3. Endothelial cells (ECs) have been suggested to protect cardiomyocytes (CMs) through the secretion of paracrine signals, as well as cell-to-cell interactions4.

Cell co-culture models have been used extensively to investigate the role of autocrine and/or paracrine cell-cell i....

Protocol

1. Experimental preparation/plating

  1. Maintain CMs and ECs according to the manufacturer's instructions.
    1. Thaw both cell lines when they arrive from vendors. Plate in T25 flasks after being washed with fresh media. It is recommended to purchase each cell culture media from the same vendors the cells were purchased from. The next day, refresh the cells with media and use when confluent.
    2. Maintain the cell culture incubator at 37 °C with 21% O2, 5% CO.......

Representative Results

All three types of inserts (A, B, C) used in this experiment have the same pore size of 0.4 µm. The only difference among them is the insert-to-base height, which allows distances between the two co-cultured cell layers to be 0.5, 1.0 and 2.0 mm, respectively, (Figure 3) and that they are from different vendors (for details see Table of Materials).

To establish an in vitro co-culture model with separate layers of two cell lines under.......

Discussion

Critical steps in the protocol
Cell co-culture models have been used to study cellular mechanisms of cardioprotection. How to create two separate layers with a meaningful distance between them is, thus, crucial for the development of a suitable co-culture model. A challenge in studying simulated IR, i.e., HR, injury is that not only ischemia (hypoxia) itself but also reperfusion (reoxygenation) aggravates cellular dysfunction. Therefore, a realistic model needs to reflect these characteristics by, .......

Acknowledgements

This work was supported, in part, by the US Department of Veterans Affairs Biomedical Laboratory R&D Service (I01 BX003482) and by institutional funds to M.L.R.

....

Materials

NameCompanyCatalog NumberComments
Adult Mouse Cardiomyocytes (CMs)Celprogen Inc11041-14Isolated from adult C57BL/6J mouse cardiac tissue
Automated Cell Counter Countess IIInvitrogenA27977Cell counting for calculating cell numbers
Bio-Safety CabinetNuaireNU425400Cell culture sterile hood
Cell Culture Freezing MediumCell Biologics Inc6916Used for cell freezing for long term cell line storage
Cell Culture IncubatorNuaireNu-5500To provide normal cell living condition (21%O2, 5%CO2, 74%N2, 37°C, humidified)
Cell Culture Incubator Gas TankA-L Compressed GasesUN1013Gas needed for cell culture incubator 
Cell Culture Inserts A (0.5 mm)Corning Inc353095Used for EC-CM co-culture
Cell Culture Inserts B (1.0 mm)Millicell MilliporePIHP01250Used for EC-CM co-culture
Cell Culture Inserts C (2.0 mm)Greiner Bio-One662640Used for EC-CM co-culture
CentrifugeAnstel Enterprises Inc4235For cell culture plating and passaging
CMs Cell Culture Flasks T25Celprogen IncE11041-14Used for CMs regular culture, coated by manufacturer
CMs Cell Culture Medium CompleteCelprogen IncM11041-14SCMs culture complete medium
CMs Cell Culture Medium Complete Phenol freeCelprogen IncM11041-14PNCMs culture medium without phenol red used during LDH measurement
CMs Cell Culture Plates 96 wellCelprogen IncE11041-14-96wellUsed for experiments of LDH measurement, coated by manufacturer
CMs Hypoxia Cell Culture MediumCelprogen IncM11041-14GFPNCMs cell culture under hypoxic condition (glucose- and serum-free)
Countess cell counting chamber slidesInvitrogenC10283Counting slides used for cell counter
Cyquant LDH Cytotoxicity KitThermo Scientific C20301LDH measurement kit
ECs Cell Culture Flasks T25Fisher Scientific FB012935Used for ECs regular culture
ECs Cell Culture Medium CompleteCell Biologics IncM1168ECs culture complete medium
ECs Cell Culture Medium Complete Phenol freeCell Biologics IncM1168PFECs culture medium without phenol red used during LDH measurement
ECs Cell Culture Plates 96 wellFisher Scientific (Costar)3370Used for experiments of LDH measurement
ECs Culture Gelatin-Based Coating SolutionCell Biologics Inc6950Used for coating flasks and plates for ECs
ECs Hypoxia Cell Culture MediumCell Biologics IncGPF1168ECs cell culture under hypoxic condition (glucose- and serum-free)
Fetal Bovine Serum (FBS)Fisher ScientificMT35011CVFBS-HI USDA-approved for cell culture and maintenance
Hypoxia ChamberStemCell Technologies27310To create a hypoxic condition with 0.01%O2 environment
Hypoxia Chamber Flow MeterStemCell Technologies27311To connect with hypoxic gas tank for a consistent gas flow speed
Hypoxic Gas Tank (0.01%O2 Cylinder)A-L Compressed GasesUN1956Used to flush hypoxic medium and chamber (0.01%O2/5%CO2/94.99N2)
Microscope NikonTMSTo observe cell condition
Mouse Primary Coronary Artery Endothelial Cells (ECs)Cell Biologics IncC57-6093Isolated from coronary artery of C57BL/6 mice
NUNC 15ML CONICL TubesFisher Scientific12565269For cell culture process, experiments, solution preparation etc.
NUNC 50ML CONICL TubesFisher Scientific12565271For cell culture process, experiments, solution preparation etc.
Phosphate Buffered Saline (PBS)Sigma-AldrichD8662Used for cell washing during culture or experiments
Plate ReaderBioTek Instrument11120533Colorimetric or fluorometric plate reading
Reaction 96 Well Palte (clear no lid)Fisher Scientific12565226Used for LDH measurement plate reading
Trypsin/EDTA for CMsCelprogen IncT1509-0141 x sterile filtered and tissue culture tested
Trypsin/EDTA for ECsCell Biologics Inc6914/06190.25%, cell cuture-tested

References

  1. Hausenloy, D. J., et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Research in Cardiology. 111 (6), 70 (2016).
  2. Hausenloy, D. J., Yellon, D. M. ....

Explore More Articles

Cell Co cultureCardiac Ischemia reperfusionIn Vitro ModelCardiomyocyteEndothelial CellSpatial EnvironmentCell cell InteractionsHypoxia Reperfusion InjuryCell CultureCell Seeding DensityExtracellular Matrix

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved