A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we present a protocol describing viral transduction of discrete brain regions with optogenetic constructs to permit synapse-specific electrophysiological characterization in acute rodent brain slices.
Studying the physiological properties of specific synapses in the brain, and how they undergo plastic changes, is a key challenge in modern neuroscience. Traditional in vitro electrophysiological techniques use electrical stimulation to evoke synaptic transmission. A major drawback of this method is its nonspecific nature; all axons in the region of the stimulating electrode will be activated, making it difficult to attribute an effect to a particular afferent connection. This issue can be overcome by replacing electrical stimulation with optogenetic-based stimulation. We describe a method for combining optogenetics with in vitro patch-clamp recordings. This is a powerful tool for the study of both basal synaptic transmission and synaptic plasticity of precise anatomically defined synaptic connections and is applicable to almost any pathway in the brain. Here, we describe the preparation and handling of a viral vector encoding channelrhodopsin protein for surgical injection into a pre-synaptic region of interest (medial prefrontal cortex) in the rodent brain and making of acute slices of downstream target regions (lateral entorhinal cortex). A detailed procedure for combining patch-clamp recordings with synaptic activation by light stimulation to study short- and long-term synaptic plasticity is also presented. We discuss examples of experiments that achieve pathway- and cell-specificity by combining optogenetics and Cre-dependent cell labeling. Finally, histological confirmation of the pre-synaptic region of interest is described along with biocytin labeling of the post-synaptic cell, to allow further identification of the precise location and cell type.
Understanding the physiology of synapses and how they undergo plastic changes is fundamental for understanding how brain networks function in the healthy brain1, and how they malfunction in brain disorders. The use of acute ex vivo brain slices allows for the recording of the electrical activity of synapses from single neurons with a high signal-to-noise ratio using whole-cell patch-clamp recordings. Control of membrane potential and straightforward pharmacological manipulation allows isolation of receptor subtypes. These recordings can be made with exquisite specificity to identify the post-synaptic neuron, including laminar and sub-r....
All animal procedures were conducted in accordance with the United Kingdom Animals Scientific Procedures Act (1986) and associated guidelines as well as local institutional guidelines.
1. Stereotaxic viral injection
NOTE: The current protocol requires anatomical, but not post-synaptic cell type, specificity.
In this protocol, we describe how to study long-range synaptic physiology and plasticity using viral delivery of optogenetic constructs. The protocol can be very easily adapted to studying almost any long-range connection in the brain. As an example, we describe the injection of AAVs encoding an opsin into rat mPFC, the preparation of acute slices from LEC, patch-clamp recordings from layer 5 LEC pyramidal neurons, and light-evoked activation of mPFC terminals in LEC (Figure 1).
The protocol presented here describes a method to explore highly specific long-range synaptic projections using a combination of stereotaxic surgery to deliver AAVs encoding optogenetic constructs, and electrophysiology in acute brain slices (Figure 1). Together these techniques offer tools to characterize the physiology and plasticity of brain circuitry with high precision in long-range and anatomically diffuse pathways that were previously inaccessible using traditional, non-specific, elec.......
This work is supported by Wellcome grant 206401/Z/17/Z. We would like to thank Zafar Bashir for his expert mentorship and Dr. Clair Booth for technical assistance and comments on the manuscript.
....Name | Company | Catalog Number | Comments |
0.2 mL tube | Fisher Scientific Ltd | 12134102 | |
10 µL pipette | Gilson | FD10001 | |
24 well plate | SARSTEDT | 83.3922 | |
3 way luer valve | Cole-Parmer | WZ-30600-02 | |
3,3′-Diaminobenzidine (DAB) substrate | Vector Laboratories | SK-4105 | |
40x objective | Olympus | LUMPLFLN40XW | |
4-aminopyridine | Hello Bio | HB1073 | |
4x objective | Olympus | PLN4X/0.1 | |
AAV9-CaMKiia-hChR2(E123T/T159C)-mCherry | Addgene | 35512 | Viral titre: 3.3x1013 GC/ml |
Achromatic lens | Edmund Optics | 49363 | Focusses visual spectrum and near-IR |
Benchtop microcentrifuge | Benchmark Scientific | C1005* | |
Biocytin | Sigma-Aldrich | B4261 | |
Borosillicate glass capillary | Warner Instruments | G150F-6 | |
Burr | Fine science tools | 19008-07 | |
CaCl2 | Sigma-Aldrich | C5670 | |
Camera - Qimaging Retiga Electro | Photometrics | 01-ELECTRO-M-14-C | |
Carbachol | Tocris | 2810 | |
Chlorhexidine surgical scrub | Vetasept | XHG008 | |
Clippers | Andis | 22445 | AGC Super 2-Speed Detachable Blade Clipper |
Collimation condenser lens | ThorLabs | ACL2520-A | |
Coverslips | Fisher Scientific Ltd | 10011913 | |
Cryostat | Leica | CM3050 S | |
CsMeSO4 | Sigma-Aldrich | C1426 | |
Cyanoacrylate glue | Rapid Electronics Ltd | 84-4557 | |
Data acquisition device | National Instruments | USB-6341 BNC | |
D-glucose | Sigma-Aldrich | G8270 | |
Dichroic mirror 500 nm long-pass | Edmund Optics | 69899 | |
Dichroic mirror 600 nm long-pass | Edmund Optics | 69901 | |
Dichroic mirror cube | ThorLabs | CM1-DCH/M | |
EGTA | Millpore | 324626 | |
Electrode holder with side port | HEKA | 895150 | |
Emission filter | Chroma | 59022m | |
Excitation filter | Chroma | ET570/20x | |
Eye gel | Dechra | Lubrithal | |
Fine paint brush | Scientific Laboratory Supplies | BRU2052 | |
Guillotine | World Precision Instruments | DCAP | |
HEPES | Sigma-Aldrich | H3375 | |
Hydrogen peroxide solution | Sigma-Aldrich | H1009 | 30% (w/w) |
Isoflurane | Henry Schein | 988-3245 | |
Isopentane | Sigma-Aldrich | M32631 | |
KCl | Sigma-Aldrich | P3911 | |
k-gluconate | Sigma-Aldrich | G4500 | |
Kinematic fluorescence filter cube | ThorLabs | DFM1T1 | |
LED driver | ThorLabs | LEDD1B | |
Lidocaine ointment | Teva | 80007150 | |
MgATP | Sigma-Aldrich | A9187 | |
MgCl | Sigma-Aldrich | M2670 | |
MgSO4 | Sigma-Aldrich | M7506 | |
Micro drill | Harvard Apparatus | 75-1887 | |
Microelectrode puller | Sutter instruments | P-87 | |
Microinjection syringe | Hamilton | 7634-01/00 | |
Microinjection syringe needle | Hamilton | 7803-05 | Custom specification: gauge 33, length 15mm, point style 4 - 12° |
Microinjection syringe pump | World Precision Instruments | UMP3T-1 | |
Mounted blue LED | ThorLabs | M470L5 | |
Mounted green LED | ThorLabs | M565L3 | |
Na2HPO4.7H2O | Sigma-Aldrich | S9390 | |
NaCl | Sigma-Aldrich | S9888 | |
NaGTP | Sigma-Aldrich | G8877 | |
NaH2PO4 | Sigma-Aldrich | S0751 | |
NaH2PO4.H2O | Sigma-Aldrich | S9638 | |
NaHCO3 | Sigma-Aldrich | S5761 | |
NIR LED | OSRAM | SFH4550 | Used for refracted IR imaging of slice, differential interference contrast (DIC) optics is another commonly used method |
OCT medium | VWR International | RAYLLAMB/OCT | Optimal cutting temperature medium |
Paraformaldehyde | Sigma-Aldrich | 158127 | |
Paraformaldehyde | Sigma-Aldrich | P6148 | |
Patch clamp amplifier | Molecular Devices | 700A | |
Peristaltic pump | World Precision Instruments | Ministar | |
Poly-L-lysine coated microscope slides | Fisher Scientific Ltd | 23-769-310 | |
Recording chamber | Warner Instruments | RC-26G | |
Scalpel blade | Swann Morton | #24 | |
Slice anchor | Warner Instruments | SHD-26-GH/15 | |
Stereotaxic frame | Kopf | Model 902 | |
Stereotaxic holder for micro drill | Harvard Apparatus | 75-1874 | |
Sucrose | Sigma-Aldrich | S0389 | |
Surgical Microscope | Carl Zeiss | OPMI 1 FR pro | |
Suture | Ethicon | W577H | |
Syringe filter for intracellular recording solution | Thermo Scientific Nalgene | 171-0020 | |
Tetrodotoxin citrate | Hello Bio | HB1035 | |
Transfer pipettes | Fisher Scientific Ltd | 10458842 | |
Triton X-100 | Sigma-Aldrich | X100 | |
Upright fluorescence microscope | Leica | DM6 B | |
VECTASHIELD Antifade Mounting Medium with DAPI | Vector Laboratories | H-1200-10 | |
VECTASTAIN ABC-HRP kit | Vector Laboratories | PK-4000 | |
Vibratome | Campden Instruments | 7000smz-2 | |
WinLTP | https://www.winltp.com/ | Version 2.32 | Data acquisition software |
Solution | |||
aCSF | |||
sucrose cutting solution | |||
PFA | |||
Intracellular? |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved