Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes a method to induce tissue-specific and highly reproducible injuries in zebrafish larvae using a laser lesion system combined with an automated microfluidic platform for larvae handling.

Abstract

Zebrafish larvae possess a fully functional central nervous system (CNS) with a high regenerative capacity only a few days after fertilization. This makes this animal model very useful for studying spinal cord injury and regeneration. The standard protocol for inducing such lesions is to transect the dorsal part of the trunk manually. However, this technique requires extensive training and damages additional tissues. A protocol was developed for laser-induced lesions to circumvent these limitations, allowing for high reproducibility and completeness of spinal cord transection over many animals and between different sessions, even for an untrained operator. Furthermore, tissue damage is mainly limited to the spinal cord itself, reducing confounding effects from injuring different tissues, e.g., skin, muscle, and CNS. Moreover, hemi-lesions of the spinal cord are possible. Improved preservation of tissue integrity after laser injury facilitates further dissections needed for additional analyses, such as electrophysiology. Hence, this method offers precise control of the injury extent that is unachievable manually. This allows for new experimental paradigms in this powerful model in the future.

Introduction

In contrast to mammals, zebrafish (Danio rerio) can repair their central nervous system (CNS) after injury1. The use of zebrafish larvae as a model for spinal cord regeneration is relatively recent. It has proven valuable to investigate the cellular and molecular mechanisms underlying repair2. This is due to the ease of manipulation, the short experimental cycle (new larvae every week), the tissues' optical transparency, and the larvae's small size, ideally suited for in vivo fluorescence microscopy.

In the case of spinal cord regeneration, two additional advantages o....

Protocol

All animal studies were carried out with approval from the UK Home Office and according to its regulations, under project license PP8160052. The project was approved by the University of Edinburgh Institutional Animal Care and Use Committee. For experimental analyses, zebrafish larvae up to 5-day-old of either sex were used of the following available transgenic lines: Tg(Xla.Tubb:DsRed;mpeg1:GFP), Tg(Xla.Tubb:DsRed), Tg(betaactin:utrophin-mCherry), Tg(Xla.Tubb:GCaMP6s), and Tg(mnx1:gfp) (see Supplementary File 1<.......

Representative Results

Validation of spinal cord transection
Structural and functional investigations were performed to assess whether the protocol allows a complete spinal cord transection.

First, to verify that the loss in fluorescence at the lesion site was due to neuronal tissue damage and not fluorescence photobleaching from the laser illumination, immunostaining using an antibody against acetylated tubulin (see Table of Materials and Supplementary File 1.......

Discussion

There is an urgent need for a deeper understanding of the processes at play during regeneration in zebrafish. This animal model offers many benefits for biomedical research, in particular for spinal cord injuries1. Most of the studies involve manual lesions that require a well-trained operator and induce multi-tissue damage. A laser lesion protocol is presented here, allowing control over the lesion characteristics and reduced damage to the surrounding tissues. Furthermore, this technique is easy .......

Acknowledgements

This study was supported by the BBSRC (BB/S0001778/1). CR is funded by the Princess Royal TENOVUS Scotland Medical Research Scholarship Programme. We thank David Greenald (CRH, University of Edinburgh) and Katy Reid (CDBS, University of Edinburgh) for the kind gift of transgenic fish (See Supplementary File). We thank Daniel Soong (CRH, University of Edinburgh) for the kind access to the 3i spinning-disk confocal.

....

Materials

NameCompanyCatalog NumberComments
Software
Microscope software Zen Blue 2.0Carl Zeiss
ImageJ/FIJIOpen-Source
Visual Studio CodeMicrosoft
Microscope and accessories
ApoTome microscopeCarl Zeiss
C-Plan-Apochromat 10X (0.5NA) dipping lensCarl Zeiss
dual AxioCam 506 m CCD camerasCarl Zeiss
Laser scanning confocal microscope LSM880Carl Zeiss
Spinning-disk module CSU-X1Yokogawa
Upright microscopeAxio Examiner D1Carl Zeiss
UV laserMicropoint
VAST BioImagerUnion Biometrica
Labware
90 mm Petri dishThermo-Fisher101R20
96-well plateCorning3841
Chemicals
Click-It EdU Imaging KitInvitrogenC10637
aminobenzoic-acid-ethyl methyl-ester (MS222)Sigma-AldrichA5040
phenylthiourea (PTU)Sigma-AldrichP7629
Antibodies
Donkey anti-chicken Alexa Fluor 488Jackson703-545-155
Donkey anti-mouse Cy3Jackson715-165-150
Mouse anti-GFPAbcamAB13970
Mouse anti-tubulin acetylated antibodySigmaT6793
Transgenic zebrafish lines
Tg(beta-actin:utrophin-mCherry)N/AEstablished by David Greenhald, University of Edinburgh
Tg(mnx1:gfp)N/AFirst described in [Flanagan-Steet et al. 2005]
Tg(Xla.Tubb:DsRed)N/AFirst described in [Peri and Nusslein-Volhard 2008]
Tg(Xla.Tubb:DsRed;mpeg1:GFP)N/AEstablished by Katy Reid, University of Edinburgh
Tg(Xla.Tubb:GCaMP6s)N/AEstablished by David Greenhald, University of Edinburgh

References

  1. Becker, C. G., Becker, T. Adult zebrafish as a model for successful central nervous system regeneration. Restorative Neurology and Neuroscience. 26 (2-3), 71-80 (2008).
  2. Ohnmacht, J., et al.

Explore More Articles

Laser induced InjuriesSpinal Cord RegenerationZebrafish LarvaeSemi automated TechniqueVAST EquipmentAnesthetizing LarvaeAutomated Zebrafish ImagingLaser AblationPython IDEScript ManagementPlate HandlingMicroscope FocusingReproducibility

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved