Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Stereotaxic surgery to target brain sites in mice commonly involves access through the skull bones and is guided by skull landmarks. Here we outline an alternative stereotaxic approach to target the caudal brainstem and upper cervical spinal cord via the cisterna magna that relies on direct visualization of brainstem landmarks.

Abstract

Stereotaxic surgery to target brain sites in mice is commonly guided by skull landmarks. Access is then obtained via burr holes drilled through the skull. This standard approach can be challenging for targets in the caudal brainstem and upper cervical cord due to specific anatomical challenges as these sites are remote from skull landmarks, leading to imprecision. Here we outline an alternative stereotaxic approach via the cisterna magna that has been used to target discrete regions of interest in the caudal brainstem and upper cervical cord. The cisterna magna extends from the occipital bone to the atlas (i.e., the second vertebral bone), is filled with cerebrospinal fluid, and is covered by dura mater. This approach provides a reproducible route of access to select central nervous system (CNS) structures that are otherwise hard to reach due to anatomical barriers. Furthermore, it allows for direct visualization of brainstem landmarks in close proximity to the target sites, increasing accuracy when delivering small injection volumes to restricted regions of interest in the caudal brainstem and upper cervical cord. Finally, this approach provides an opportunity to avoid the cerebellum, which can be important for motor and sensorimotor studies.

Introduction

Standard stereotaxic surgery to target brain sites in mice1 commonly involves fixation of the skull using a set of ear bars and a mouth bar. Coordinates are then estimated based on reference atlases2,3, and skull landmarks, namely, bregma (the point where the sutures of the frontal and parietal bones come together) or lambda (the point where the sutures of the parietal and occipital bones come together; Figure 1A,B). Through a burr hole into the skull above the estimated target, the target region can then be reached, either for delivery of ....

Protocol

The author declares that the protocol follows the guidelines of the Institutional Animal Care and Use Committee at Beth Israel Deaconess Medical Center.

1. Preparation of surgical instruments and stereotaxic frame

NOTE: The surgery is performed under aseptic conditions. Sterility is maintained using the sterile tip technique.

  1. Install the stereotaxic arm with a micropipette or syringe filled with an injectable of choice (adeno-associated .......

Representative Results

The cisterna magna approach makes it possible to target caudal brainstem and upper cervical cord structures that are otherwise hard to reach via standard stereotaxic approaches or are prone to inconsistent targeting. The surgery to reach the cisterna magna requires incisions of the skin, a thin layer of trapezius muscle, and opening of the dura mater and is therefore well tolerated by mice. It is especially efficient and less invasive when targeting multiple (longitudinally dispersed or bilateral) sites, as it d.......

Discussion

Standard stereotaxic surgery commonly relies on skull landmarks to calculate the coordinates of target sites in the CNS1. Target sites are then accessed via burr holes that are drilled through the skull1. This method is not ideal for the caudal brainstem as target sites are located distant from the skull landmarks in the anteroposterior and dorsoventral planes2 and as the anatomy of the skull and overlying muscles make access challenging

Acknowledgements

This work was supported by R01 NS079623, P01 HL149630, and P01 HL095491.

....

Materials

NameCompanyCatalog NumberComments
Alcohol padMed-Vet InternationalSKU: MDS090735Zskin preparation for the prevention of surgical site infection
Angled forceps, Dumont #5/45FST11251-35only to grab dura
Betadine padMed-Vet InternationalSKU:PVP-PADskin preparation for the prevention of surgical site infection
Cholera toxin subunit-b, Alexa Fluor 488/594 conjugateThermo Fisher Scientific488: C34775, 594: C22842Fluorescent tracer
ClippersWahlModel MC3, 28915-10for shaving fur at surgical site
Electrode holder with corner clampKopf1770to hold glass pipette
FlowmeterGilmont instrumentsmodel # 65 MMto regulate flow of isoflurane and oxygen to mouse on the surgical plane
Fluorescent microspheres, polystyreneThermo Fisher ScientificF13080Fluorescent tracer
Heating padStoelting53800Mthermoregulation
Induction chamber with port hook up kitMidmark Inc93805107 92800131chamber providing initial anasthesia
Insulin SyringeExelint International26028to administer saline and analgesic
IsofluraneMed-Vet InternationalSKU:RXISO-250inhalant anesthetic
Isoflurane Matrix VIP 3000 vaporizerMidmark Inc91305430apparatus for inhalant anesthetic delivery
Laminectomy forceps, Dumont #2FST11223-20only to clean dura
Medical air, compressedLindeUN 1002used with stimulator & PicoPump for providing air for precision solution injection
Meloxicam SRZoo Pharm LLCLot # MSR2-211201analgesic
Microhematocrit borosilicate glass pre calibrated capillary tubeGlobe Scientific Inc51628for transfection of material to designated co-ordinates
Mouse adaptorStoelting0051625 adapting rat stereotaxic frame for mouse surgery
Needle holder, Student Halsted- Mosquito HemostatsFST91308-12for suturing
Oxygen regulatorLife Support ProductsS/N 909328, lot 092109regulate oxygen levels from oxygen tank
Oxygen tank, compressedLindeUSP UN 1072provided along with isoflurane anasthesia
Plastic cardnot applicablenot applicableany firm plastic card, cut to fit the stereotactic frame (e.g. ID card)
Pneumatic PicoPump ( or similar)World Precision Instruments (WPI)SYS-PV820For precision solution injection
Saline, sterileMountainside Medical EquipmentH04888-10to replace body fluids lost during surgery
Scalpel handle, #3FST10003-12to hold scalpel
Scissors, WagnerFST14070-12to cut polypropylene suture
Spring scissors, Vannas 2.5mm with accompanying boxFST15002-08scissors only to open dura, box to elevate body
Stereotactic micromanipulatorKopf1760-61attached to electrode holder to adjust position based on co-ordinates
Stereotactic 'U' frame assembly and intracellular base plateKopf1730-B, 1711frame for surgery
Sterile cotton tipped applicatorsPuritan25-806 10WCabsorbing blood from surgical field
Sterile non-fenestrated drapesHenry Schein9004686for sterile surgical field
Sterile opthalmic ointmentPuralubeP1490ocular lubricant
Stimulator & TubingGrass Medical InstrumentsS44to provide controlled presurred air for precision solution injection
Surgical Blade #10Med-Vet InternationalSKU: 10SSfor skin incision
Surgical forceps, Extra fine GraefeFST11153-10to hold skin
Surgical glovesMed-Vet InternationalMSG2280Zfor asceptic surgery
Surgical microscopeLeicaModel M320/ F12for 5X-40X magnification of surgical site
Suture 5-0 polypropyleneOasisMV-8661to close the skin
Tegaderm3M3M ID 70200749250provides sterile barrier
Universal Clamp and stand postKopf1725attached to stereotactic U frame and intracellular base plate
Wound hook with hartman hemostatsFST18200-09, 13003-10to separate muscles and provide surgical window

References

  1. JoVE. Rodent Stereotaxic Surgery. JoVE Science Education Database. , (2021).
  2. Paxinos, G., Franklin, K. B. J. . The Mouse Brain in Stereotaxic Coordinates. , (2001).
  3. Lein, E. S., et al.

Explore More Articles

StereotaxicMicroinjectionCaudal BrainstemUpper Cervical Spinal CordCisterna MagnaMiceNeurosurgical TechniquePrecision DeliveryRestricted Regions Of InterestReproducible AccessNeuroscience Research

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved