A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Oxygen consumption rate (OCR) is a common proxy for mitochondrial function and can be used to study different disease models. We developed a new method using a Seahorse XF analyzer to directly measure the OCR in acute striatal slices from adult mice that is more physiologically relevant than other methods.
Mitochondria play an important role in cellular ATP production, reactive oxygen species regulation, and Ca2+ concentration control. Mitochondrial dysfunction has been implicated in the pathogenesis of multiple neurodegenerative diseases, including Parkinson's disease (PD), Huntington's disease, and Alzheimer's disease. To study the role of mitochondria in models of these diseases, we can measure mitochondrial respiration via oxygen consumption rate (OCR) as a proxy for mitochondrial function. OCR has already been successfully measured in cell cultures, as well as isolated mitochondria. However, these techniques are less physiologically relevant than measuring OCR in acute brain slices. To overcome this limitation, the authors developed a new method using a Seahorse XF analyzer to directly measure the OCR in acute striatal slices from adult mice. The technique is optimized with a focus on the striatum, a brain area involved in PD and Huntington's disease. The analyzer performs a live cell assay using a 24-well plate, which allows the simultaneous kinetic measurement of 24 samples. The method uses circular-punched pieces of striatal brain slices as samples. We demonstrate the effectiveness of this technique by identifying a lower basal OCR in striatal slices of a mouse model of PD. This method will be of broad interest to researchers working in the field of PD and Huntington's disease.
Mitochondrial dysfunction has been implicated in several neurological diseases, including Parkinson's disease (PD), Huntington's disease, and Alzheimer's disease1,2,3. PD models such as PINK1 knockout (KO) mice and rats display impaired mitochondrial function4,5,6,7,8,9,10,11. Mitochondria isolated from the striatum (STR) or whole-brain of aged PINK1 KO mouse exhibit defects in complex I7,10,12,13. Directly measuring the oxygen consumption rate (OCR) is one of the most common methods to evaluate mitochondrial function since OCR is coupled with ATP production, the principal function of mitochondria14. Therefore, measuring OCR in disease models or patient-derived samples/tissue can help investigate how mitochondrial dysfunction leads to disease.
Currently, there are several ways to measure mitochondrial OCR, including the Clark electrode and other O2 electrodes, O2 fluorescent dye, and the extracellular flux analyzer15,16,17,18,19. As an advantage, O2 electrode-based methods allow various substrates to be easily added. However, they are insufficient for simultaneously measuring several samples. Compared to traditional O2 electrode-based methods, the extracellular flux analyzer, a commonly used tool for OCR in cell cultures or purified mitochondria, offers improved throughput15,18,20. Nevertheless, all these methods are usually applied to measure OCR in isolated mitochondria or cell cultures6,16,17,19,20,21. The isolation of mitochondria causes inadvertent damage, and extracted mitochondria or cell cultures are less physiologically relevant than intact brain slices22. Even when microelectrodes are used in slices, they are less sensitive and more difficult to operate than in cultured cells23.
To meet these challenges, we developed a method using the XF24 extracellular flux analyzer, which allows for the analysis of multiple metabolic parameters from acute striatal brain slices of mice24. This technique provides continuous direct quantification of mitochondrial respiration via the OCR. In brief, small sections of striatal brain slices are placed into wells of the islet plate, and the analyzer uses oxygen and proton fluorescent-based biosensors to measure the OCR and extracellular acidification rate, respectively17,21,25.
One of the unique features of the analyzer is the four injection wells, which allow the continued measurement of OCR while sequentially injecting up to four compounds or reagents; this enables the measurement of several cellular respiration parameters, such as basal mitochondrial OCR, ATP-linked OCR, and maximal mitochondrial OCR. The compounds injected during the measurements for the protocol shown here were working concentrations of 10 mM pyruvate in the first solution well (port A), 20 µM oligomycin in the second solution well (port B), 10 µM carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) in the third well (port C), and 20 µM antimycin A in the fourth well (port D), based on Fried et al.25. It must be noted that these concentrations were working concentrations, and stock solutions of 10x, 11x, 12x, and 13x were injected into the solution ports A through D, respectively. The purpose of using each solution was as follows: 1) Pyruvate was necessary since, without it, the addition of FCCP would have a decreased OCR response caused by a limitation of available substrates; 2) Oligomycin inhibits ATP synthase and allows the measurement of ATP linked respiration; 3) FCCP uncouples oxidation from phosphorylation and allows the measurement of maximal mitochondrial capacity; 4) Antimycin A inhibits complex III in the electron transport chain and, therefore, allows the measurement of OCR not linked to the mitochondria.
The concentration of oligomycin used was determined based on the following reasons: 1) The recommended dose of oligomycin for most cell types (isolated mitochondria or cell cultures) is 1.5 µM. From experience, usually 3x-10x of the dissociated cells dose is used for the slice experiments since there might be a gradient, and the penetration of solution in the slices takes time. Therefore, the concentration should be in the range of 5 µM to 25 µM. 2) A 20 µM concentration was selected based on Fried et al.25. Higher concentrations were not tried due to the non-specific toxicity of oligomycin. 3) In the report by Underwood et al.26, the authors did a titration experiment for oligomycin and found that doses at 6.25, 12.5, 25, and 50 µg/mL resulted in similar inhibition. The higher concentration of oligomycin (50 µg/mL) did not inhibit more but had a bigger variance. 4) In our observation, the determining factor seems to be the penetrating ability of oligomycin. It is difficult for oligomycin to penetrate the tissue, and that is why it takes at least 7 to 8 cycles to reach the plateau, the maximum response. As long as it reaches the plateau, the inhibition is assumed to be maximal.
A key technical challenge of adapting the extracellular flux analyzer for measuring OCR in striatal slices is to prevent tissue hypoxia. Since the buffer was not oxygenated during the entire duration of measurements (about 4 h), hypoxia was a central issue. This is especially true for thicker tissue samples, where oxygen cannot diffuse throughout the samples. To overcome this problem, slices were sectioned at 150 µm thickness, so that ambient oxygen could penetrate the middle of the brain slices. In addition, 4 mg/mL bovine serum albumin (BSA) was added to the pre-oxygenated artificial cerebrospinal fluid (ACSF) buffer, which facilitated the determination of maximal OCR, as previously suggested23. We examined whether cells were alive. First, Hoechst 33258 (10 µM) and propidium iodide (10 µM) were used to examine whether cells were healthy under these conditions. We then examined whether medium spiny neurons were functionally healthy using patch-clamp recording. We further evaluated whether dopamine (DA) terminals in the striatal slices were functionally healthy by measuring DA release using fast-scan voltammetry. The results showed that striatal slices that were not oxygenated (ACSF/BSA group) were as healthy as the oxygenated control group24.
We then tested different combinations of slice thickness and punch size to determine optimal striatal slice conditions for the flux respiration assay. Dorsal striatal slices with different thicknesses (150 µm and 200 µm) and punch sizes (1.0 mm, 1.5 mm, and 2.0 mm in diameter) were used for OCR analysis using the analyzer. Striatal slices that were 150 µm thick with a punch size of 1.5 mm in diameter had the highest coupling efficiency and OCRs within an optimal range for the analyzer24.
All the procedures including animal work were conducted according to national and international guidelines and were approved by the Animal Care and Use Committee of Thomas Jefferson University. Male FVB/NTac mice at the age of 3 to 14 months were used. The following steps were performed in a non-sterile setting, but caution should be taken to keep everything as clean as possible.
NOTE: The method presented here was established and used in the research reported by Zhi et al.24. The experiments described here used a Seahorse XF24 extracellular flux analyzer (see Table of Materials). These methods can be adapted for the XFe24 analyzer, and some results were confirmed using this analyzer.
1. Hydrate cartridge sensors (1 day before the assay)
2. Prepare the tissue plate (on the day of the assay)
3. Acute striatal slice preparation and excised slice placement
4. Loading of cartridges with desired compounds
5. Calibration and performing the assay
The first step of this study was to optimize the slice thickness and punch size used to excise a section of the striatum from the slice (Figure 3A). A slice at 150 µm thickness and a 1.5 mm punch size gave the best results determined by the coupling efficiency (Figure 3B-C). As shown in Figure 3B, OCR is relatively stable for 5 h with less than 10% run down. In addition, functional measurements...
The method we developed allowed an XF analyzer to be used for measuring OCR in striatal slices from adult mice over a time span of 4 h. This method provides a new way to measure cellular bioenergetics in punches excised from anatomically defined brain structures. Since the tissue samples being analyzed are rather small, the metabolic parameters of specific brain areas involved in a disease can be investigated. In addition, using acute slices more closely mimics the physiological cellular environment, which cannot be achi...
The authors have nothing to disclose.
We thank Wangchen Tsering and Pamela Walter for their critical reading and editing of this manuscript. This work was supported by the National Institute of Neurological Disorders and Stroke (NINDS) (NS054773 to C.J. L. and NS098393 to H.Z.) and the Department of Neuroscience at Thomas Jefferson University (Startup Funds to H.Z.).
Name | Company | Catalog Number | Comments |
Accumet AB150 pH benchtop meter | Thermo Fisher Scientific | 13-636-AB150 | To measure pH |
Antimycin A from streptomyces sp. | SIGMA | A8674 | To inhibit complex III of the mitochondria |
Bovine Serum Albumin (BSA) | SIGMA | A6003 | To make modified artificial cerebrospinal fluid (BSA-ACSF) |
Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) | SIGMA | C2920 | To uncouple mitochondrial respiration |
D-Glucose | SIGMA | G8270 | To make artificial cerebrospinal fluid (ACSF) |
DMSO | SIGMA | D8418 | To dissovle compounds |
HEPES | SIGMA | H3375 | To make artificial cerebrospinal fluid (ACSF) |
Humidified non-CO2 incubator | Fisher Scientific | 11-683-230D | To hydrate plates at 37 °C |
Oligomycin from Streptomyces diastatochromogenes | SIGMA | O4876 | To inhibit mitochondrial ATP synthase |
Parafilm | SIGMA-ALDRICH | sealing film | |
Rotenone | Tocris | 3616 | To inhibit complex I of the mitochondria |
Seahorse XF Calibrant Solution 500 mL | Seahorse Bioscience | 103681-100 | Solution for seahorse calibration |
Seahorse XF Extracellular Flux Analyzer | Seahorse Bioscience | Equipment used to analyze oxygen consumption rate, old generation | |
Seahorse XFe24 Extracellular Flux Analyzer | Seahorse Bioscience | Equipment used to analyze oxygen consumption rate, new generation | |
Seahorse XF24 FluxPaks | Seahorse Bioscience | 101174-100 | Package of flux analyzer sensor cartridges, tissue culture plates, capture screens, calibrant solution and calibration plates; assay kit. |
Sodium pyruvate | SIGMA | P2256 | To prevent any substrate-limiting constraints of substrate supply |
Stainless steel biopsy punches | Miltex | Device used to punch slices | |
Sterile cell culture dish, 35 x 10 mm | Eppendrof | 0030700102 | Used for slice punch |
Vibratome | Leica | VT1200 | To slice brain tissue |
Water bath | Thermo Scientific Precision | 282-115 | To heat buffer and solutions |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved