A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we describe a set of methods for characterizing the interaction of proteins with membranes of cells or microvesicles.
In the human body, most of the major physiologic reactions involved in the immune response and blood coagulation proceed on the membranes of cells. An important first step in any membrane-dependent reaction is binding of protein on the phospholipid membrane. An approach to studying protein interaction with lipid membranes has been developed using fluorescently labeled proteins and flow cytometry. This method allows the study of protein-membrane interactions using live cells and natural or artificial phospholipid vesicles. The advantage of this method is the simplicity and availability of reagents and equipment. In this method, proteins are labeled using fluorescent dyes. However, both self-made and commercially available, fluorescently labeled proteins can be used. After conjugation with a fluorescent dye, the proteins are incubated with a source of the phospholipid membrane (microvesicles or cells), and the samples are analyzed by flow cytometry. The obtained data can be used to calculate the kinetic constants and equilibrium Kd. In addition, it is possible to estimate the approximate number of protein binding sites on the phospholipid membrane using special calibration beads.
Biomembranes separate the inner contents of animal cells and extracellular space. Note that membranes also surround microvesicles formed during the cell's life cycle and organelles. The cell membrane is predominantly composed of lipids and proteins. Membrane proteins perform signaling, structural, transport, and adhesive functions. However, the lipid bilayer is also essential for the interrelation of the animal cell with the extracellular space. This paper proposes a method for studying the peripheral interaction of external proteins with the lipid membrane.
The most striking example of reactions occurring on the outer membrane layer of....
1. Fluorescent protein labeling
The flow cytometry method described herein is used to characterize the binding of plasma coagulation proteins to activated platelets. In addition, phospholipid vesicles PS:PC 20:80 were applied as a model system. This paper mainly focuses on artificial phospholipid vesicles as an example. The parameters of the cytometer, in particular, the photomultiplier tube (PMT) voltage and the compensation must be selected for each specific device, the object of study (cells, artificial or natural microvesicles), and the dyes used. .......
The proposed method can be adapted for a rough characterization of the interaction of proteins with phospholipid membranes from various sources and compositions. The quantitative flow cytometry described here concedes to surface plasmon resonance (SPR) in several parameters. In particular, it has a lower sensitivity and time resolution and requires fluorescent labeling of proteins. Fluorescent labeling can lead to a change in conformation and loss of activity for many proteins and therefore requires careful control. Howe.......
The authors were supported by a Russian Science Foundation grant 20-74-00133.
....Name | Company | Catalog Number | Comments |
A23187 | Sigma Aldrich | C7522-10MG | |
Alexa Fluor 647 NHS Ester (Succinimidyl Ester) | Thermo Fisher Scientific | A37573 | fluorescent dye |
Apyrase from potatoes | Sigma Aldrich | A2230 | |
BD FACSCantoII | BD Bioscience | ||
bovine serum albumin | VWR Life Science AMRESCO | Am-O332-0.1 | |
Calcium chloride, anhydrous, powder, ≥97% | Sigma Aldrich | C4901-100G | |
Cary Eclipse Fluorescence Spectrometer | Agilent | ||
D-(+)-Glucose | Sigma Aldrich | G7528-1KG | |
DiIC16(3) (1,1'-Dihexadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate) | Thermo Fisher Scientific | D384 | |
DMSO | Sigma Aldrich | D8418 | |
EDTA disodium salt | VWR Life Science AMRESCO | Am-O105B-0.1 | |
FACSDiva | BD Bioscience | cytometry data acquisition software | |
FlowJo | Tree Star | cytometer software for data analysis | |
HEPES | Sigma Aldrich | H4034-500G | |
Human Factor X | Enzyme research | HFX 1010 | |
Hydroxylamine hydrochloride | Panreac | 141914.1209 | |
L-α-phosphatidylcholine (Brain, Porcine) | Avanti Polar Lipids | 840053P | |
L-α-phosphatidylserine (Brain, Porcine) (sodium salt) | Avanti Polar Lipids | 840032P | |
Magnesium chloride | Sigma Aldrich | M8266-100G | |
Mini-Extruder | Avanti Polar Lipids | 610020-1EA | |
OriginPro 8 SR4 v8.0951 | OriginLab Corporation | Statistical software | |
Phosphate Buffered Saline (PBS) Tablets, Biotechnology Grade | VWR Life Science AMRESCO | 97062-732 | |
Potassium chloride | Sigma Aldrich | P9541-500G | |
Prostaglandin E1 | Cayman Chemical | 13010 | |
Sephadex G25 | GE Healthcare | GE17-0033-01 | gel filtration medium for protein purification |
Sepharose CL-2B | Sigma Aldrich | CL2B300-500ML | gel filtration medium for platelet purification |
Sodium bicarbonate | Corning | 61-065-RO | |
Sodium chloride | Sigma Aldrich | S3014-500G | |
Sodium phosphate monobasic | Sigma Aldrich | S3139-250G | |
Spin collumns with membrane 0.2 µm | Sartorius | VS0171 | |
Trisodium citrate dihydrate | Sigma Aldrich | S1804-1KG |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved