Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The standard membrane feeding assay (SMFA) is regarded as the gold standard for the assessment and identification of potential antimalarial compounds. This artificial feeding system is used to infect mosquitoes to further evaluate the effects of such compounds on the intensity and prevalence of the Plasmodium falciparum parasite.

Abstract

Malaria remains one of the most devastating diseases worldwide and, to date, the African region is still responsible for 94% of all cases worldwide. This parasitic disease requires a protozoan parasite, an Anopheles mosquito vector, and a vertebrate host. The Anopheles genus comprises more than 500 species, of which 60 are known as vectors of the parasite. The Plasmodium parasite genus consists of 250 species, and 48 of these are involved in disease transmission. Furthermore, the Plasmodium falciparum parasite has contributed toward an estimated 99.7% of malaria cases in sub-Saharan Africa in recent years.

Gametocytes form part of the sexual stage of the parasite and are ingested by the female mosquito upon feeding on an infected human host. Further development of the parasite within the mosquito is enhanced by favorable environmental conditions in the midgut of the mosquito. Here, the fusion of the female and male gametes takes place, and the motile ookinetes originate. The ookinetes enter the midgut epithelium of the mosquito, and mature ookinetes form oocysts, which, in turn, produce motile sporozoites. These sporozoites migrate to the mosquito's salivary glands and are injected as a mosquito takes a blood meal.

For drug discovery purposes, mosquitoes were artificially infected with gametocyte-infected blood in the standard membrane feeding assay (SMFA). To detect infection within the mosquito and/or to assess the efficacy of antimalarial compounds, the midguts of the female mosquitoes were removed post infection and were stained with mercurochrome. This method was used to enhance the visual detection of oocysts under the microscope for the accurate determination of oocyst prevalence and intensity.

Introduction

Malaria, known as one of the most destructive diseases worldwide, still poses a great threat to several countries-especially those within the African region-and contributes toward approximately 95% of cases worldwide1. This disease is caused by a protozoan parasite and, together with its Anopheles mosquito vector, these culprits can cause great harm to the human host2. More specifically, the falciparum species of the Plasmodium parasite genus is responsible for an estimated 99% of malaria cases in sub-Saharan Africa1. In addition to this, several major Anopheles....

Protocol

Refer to Figure 1 for an illustration of the protocol. Ethical clearance was obtained from the University of Pretoria Health Sciences Ethics Committee (506/2018) for the withdrawal and use of human blood.

1. Gametocyte culture

NOTE: Prior to setting up the SMFA, a gametocyte culture was prepared at the University of Pretoria (see Reader et al.22 for the complete protocol).

  1. Prepare a g.......

Representative Results

The total number of control specimens dissected was 47, with an average to 89% prevalence and an intensity of 9.5 oocysts per midgut (Table 1, as published previously22). For the compound MMV1581558, the sample size reached a total of 42 specimens, with a 36% oocyst prevalence and an average intensity of 1.5 oocysts. This shows a reduction in oocyst prevalence of 58% and a TRA of 82% across all three biological replicates (Table 1).

Discussion

For this protocol to be executed successfully, attention should be given to each step, even though it might be a tedious and laborious process. One of the most important steps is to ensure that the gametocyte culture is of good quality and that it consists of mature gametocytes, with the correct male:female ratio, prior to starting the SMFA23,24. During the SMFA, it is also crucial to maintain the gametocyte culture at the correct temperature to prevent male game.......

Acknowledgements

The authors would like to acknowledgeProf. Lyn-Mari Birkholtz and Dr. Janette Reader from the Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, at the University of Pretoria, for culturing and supplying the gametocyte culture. The parasite strain was obtained from the latter department (not part of this publication). The Department of Science and Innovation (DSI) and the National Research Foundation (NRF); South African Research Chairs Initiative (UID 64763 to LK and UID 84627 to LMB); the NRF Communities of Practice (UID 110666 to LMB and LK); and the South African Medical Research Council Strategic Health Innovati....

Materials

NameCompanyCatalog NumberComments
Bovine intestine/Butchery
Compound MMV1581558MMVPandemic response box
Dissecting needlesWRIMCustom made
falcon tubeLasec
Glass feedersGlastechniek Peter Coelen B.V.
Graphpad Prism (8.3.0)Graphpad
MercurochromeMerck (Sigma-Aldrich)129-16-8
Microscope slidesMerch (Sigma-Aldrich)S8902
ParafilmCleansafe
PBS tabletsThermoFisher ScientificBP2944
Perspex biosafety cabinetWits UniversityMade by the contractors at Wits
Plastic cups (350 mL)Plastic Land

References

  1. World Malaria Report. World Health Organization Available from: https://www.who.int/publications/i/item/9789240040496 (2021)
  2. Takken, W., Verhulst, N. O. Host preferences of blood feeding mosquitoes. Annual Review of Entomology. 58, 433-453 (2013).
  3. Gillies, M. T., Coetzee, M.

Explore More Articles

Plasmodium FalciparumAnopheles MosquitoMembrane Feeding AssayMalaria TransmissionGametocyte infected BloodMosquito InfectionOocyst DetectionMidgut DissectionLaboratory ScreeningTransmission blocking Compounds

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved