JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

诱导眼表炎症和受累组织收集

Published: August 4th, 2022

DOI:

10.3791/63890

1Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 2Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen

眼表炎症会损害眼表组织并损害眼睛的重要功能。本协议描述了一种在睑板腺功能障碍(MGD)的小鼠模型中诱导眼部炎症和收集受损组织的方法。

眼表疾病包括一系列干扰角膜、结膜和相关眼表腺网络的功能和结构的疾病。睑板腺(MG)分泌脂质,形成覆盖层,防止泪膜水部分蒸发。中性粒细胞和细胞外DNA陷阱在过敏性眼病小鼠模型中填充MG和眼表。聚集的中性粒细胞细胞外陷阱(aggNET)形成由细胞外染色质组成的网状基质,可阻塞MG出口并调节MG功能障碍。本文提出了一种诱导眼表炎症和MG功能障碍的方法。详细描述了收集与眼表相关的器官的程序,例如角膜,结膜和眼睑。使用处理每个器官的既定技术,还显示了MG功能障碍的主要形态学和组织病理学特征。眼渗出物提供了评估眼表炎症状态的机会。这些程序能够在临床前水平上研究局部和全身抗炎干预。

每眨眼一下,就会补充分散在角膜上的光滑泪膜。眼表上皮有助于泪膜在眼表的分布和正确定向。粘蛋白由角膜和结膜上皮细胞提供,以帮助定位泪膜的水部分,这些泪膜来自眼睛表面的泪腺。最后,MG分泌脂质,形成覆盖层,防止泪膜123的水性部分蒸发。以这种方式,所有眼器官的协调功能保护眼表免受病原体入侵或伤害,并支持水晶般清晰的视力,而没有任何疼痛或不适。

在健康的眼表,眼流分泌物或眼部风湿可清除灰尘、死去的上皮细胞、细菌、粘液和免疫细胞。聚集的中性粒细胞细胞外陷阱(aggNET)配制由细胞外染色质组成的网状基质,并将这些成分掺入眼风湿中。AggNETs通过促炎细胞因子和趋化因子的蛋白水解降解来解决炎症4。然而,当它们变得功能失调时,这些异常的 aggNET 会驱动疾病的发病机制,例如 COVID-195、胆结石6 和唾液石症7 中的血管闭塞。同样,眼表上的aggNETs起着保护作用,有助于解决高度暴露表面的炎症8。眼表过度形成或缺乏 aggNET 都会损害泪膜稳定性和....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

所有涉及动物的程序均根据动物福利机构指南进行,并经埃尔朗根-纽伦堡弗里德里希-亚历山大大学(FAU)动物福利委员会批准(许可证号:55.2.2-2532-2-1217)。本研究使用年龄为7-9周的雌性C57Bl / 6小鼠。从商业来源获得小鼠(见 材料表),并以12小时昼夜循环保存在特定的无病原体条件下。

1.诱导小鼠眼表炎症

  1. 进行免疫接种的免疫原准备。
      .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

本协议描述了建立眼表炎症小鼠模型的顺序步骤。这些协议旨在展示如何在局部应用治疗,获取眼部渗出物,并切除相关的辅助器官,如健康和发炎的眼睑(图2),角膜和结膜。解剖上眼睑时必须注意结膜的隔离,并且在角膜解剖期间必须将其储存在1x PBS中。这将防止结膜干燥,结膜可用于组织学、药代动力学和基因表达研究。

按照上述方案连续7天局.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

睑板腺的油性分泌物对健康的眼睛非常重要22。然而,聚集的中性粒细胞细胞外陷阱(aggNET)阻塞这些皮脂腺,这些中性粒细胞细胞外陷阱(aggNET)排列成位于双眼睑睑板上的平行链,可以破坏泪膜23。这种破坏导致睑板腺功能障碍(MGD)1 和加速泪液蒸发并调节眼表损伤2。该协议描述了建立导致MG梗阻的免疫介导的眼表炎症?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这项工作得到了德国研究基金会(DFG)2886 PANDORA项目-No.B3的部分支持;SCHA 2040/1-1;MU 4240/2-1;CRC1181(C03);TRR241(B04),H2020-FETOPEN-2018-2020项目861878,并由大众基金会(授予97744)授予MH。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1x PBSGibco
Aluminium HydroxideImject alum Adjuvant7716140 mg/ mL
Final Concentration: in vivo: 1 mg/ 100 µL
C57Bl/6 mice, aged 7–9 weeksCharles River Laboratories 
CalciumCarl rothCN93.11 M
Final Concentration: 5 mM
Curved forcepsFST by Dumont SWITZERLAND5/45 11251-35
Fine sharp scissorFST Stainless steel, Germany15001-08
Laminar safety cabinetHerasafe
Macrophotography CameraCanonEOS6D
Macrophotography Camera (without IR filter)NikonD5300
MnaseNew England biolabsM0247S2 x 106 gel U/mL
Multi-analyte flow assay kit (Custom mouse 13-plex panel)BiolegendCLPX-200421AM-UERLAN
NaCl 0,9% (Saline)B.Braun
Ovalbumin (OVA)Endofit, Invivogen9006-59-110 mg/200 µL in saline
Pertussis toxin ThermoFisher Scientific PHZ117450 µg/ 500 µL in saline
Final Concentration: in vivo: 100 µg/ 100 µL
PetridishGreiner bio-one628160
ScalpelFeather disposable scalpelNo. 21 Final Concentration: in vivo:  300 ng/ 100 µL
StereomicroscopeZaissStemi508
Syringe (corneal/iris washing)BD Microlane27 G x 3/4 - Nr.20 0,4 x 19 mm
Syringe (i.p immunization)BD Microlane24 G1"-Nr 17, 055* 25 mm

  1. Gilbard, J. P., Rossi, S. R., Heyda, K. G. Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology. 96 (8), 1180-1186 (1989).
  2. Mishima, S., Maurice, D. M. The oily layer of the tear film and evaporation from the corneal surface. Experimental Eye Research. 1, 39-45 (1961).
  3. Gipson, I. K. The ocular surface: The challenge to enable and protect vision: The Friedenwald lecture. Investigative Ophthalmology and Visual Science. 48 (10), 4391-4398 (2007).
  4. Hahn, J., et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. The FASEB Journal. 33 (1), 1401-1414 (2019).
  5. Leppkes, M., et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 58, 102925 (2020).
  6. Munoz, L. E., et al. Neutrophil extracellular traps initiate gallstone formation. Immunity. 51 (3), 443-450 (2019).
  7. Schapher, M., et al. Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells. 9 (9), 2139 (2020).
  8. Mahajan, A., et al. Frontline science: Aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface. Journal of Leukocyte Biology. 105 (6), 1087-1098 (2019).
  9. DEWS Definition and Classification Subcommittee. The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop. The Ocular Surface. 5 (2), 75-92 (2007).
  10. Nichols, K. K., et al. The international workshop on meibomian gland dysfunction: Executive summary. Investigative Ophthalmology and Visual Science. 52 (4), 1922-1929 (2011).
  11. Mahajan, A., et al. Aggregated neutrophil extracellular traps occlude Meibomian glands during ocular surface inflammation. The Ocular Surface. 20, 1-12 (2021).
  12. Jester, B. E., Nien, C. J., Winkler, M., Brown, D. J., Jester, J. V. Volumetric reconstruction of the mouse meibomian gland using high-resolution nonlinear optical imaging. The Anatomical Record. 294 (2), 185-192 (2011).
  13. Nien, C. J., et al. Age-related changes in the meibomian gland. Experimental Eye Research. 89 (6), 1021-1027 (2009).
  14. Parfitt, G. J., Xie, Y., Geyfman, M., Brown, D. J., Jester, J. V. Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD). Aging. 5 (11), 825-834 (2013).
  15. Lambert, R. W., Smith, R. E. Pathogenesis of blepharoconjunctivitis complicating 13-cis-retinoic acid (isotretinoin) therapy in a laboratory model. Investigative Ophthalmology and Visual Science. 29 (10), 1559-1564 (1988).
  16. Jester, J. V., Nicolaides, N., Kiss-Palvolgyi, I., Smith, R. E. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Investigative Ophthalmology and Visual Science. 30 (5), 936-945 (1989).
  17. Jester, J. V., et al. In vivo biomicroscopy and photography of meibomian glands in a rabbit model of meibomian gland dysfunction. Investigative Ophthalmology and Visual Science. 22 (5), 660-667 (1982).
  18. Lambert, R., Smith, R. E. Hyperkeratinization in a rabbit model of meibomian gland dysfunction. American Journal of Ophthalmology. 105 (6), 703-705 (1988).
  19. Knop, E., Knop, N., Millar, T., Obata, H., Sullivan, D. A. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investigative Ophthalmology and Visual Science. 52 (4), 1938-1978 (2011).
  20. Huang, W., Tourmouzis, K., Perry, H., Honkanen, R. A., Rigas, B. Animal models of dry eye disease: Useful, varied and evolving (Review). Experimental and Therapeutic Medicine. 22 (6), 1394 (2021).
  21. Reyes, N. J., et al. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Science Translational Medicine. 10 (451), (2018).
  22. Knop, E., Korb, D. R., Blackie, C. A., Knop, N. The lid margin is an underestimated structure for preservation of ocular surface health and development of dry eye disease. Developments in Ophthalmology. 45, 108-122 (2010).
  23. Knop, N., Knop, E. Meibomian glands. Part I: anatomy, embryology and histology of the Meibomian glands. Ophthalmologe. 106 (10), 872-883 (2009).
  24. Nien, C. J., et al. Effects of age and dysfunction on human meibomian glands. Archives of Ophthalmology. 129 (4), 462-469 (2011).
  25. Lio, C. T., Dhanda, S. K., Bose, T. Cluster analysis of dry eye disease models based on immune cell parameters - New insight into therapeutic perspective. Frontiers in Immunology. 11, 1930 (2020).
  26. Nguyen, D. D., Luo, L. J., Lai, J. Y. Thermogels containing sulfated hyaluronan as novel topical therapeutics for treatment of ocular surface inflammation. Materials Today Bio. 13, 100183 (2022).
  27. Lin, P. H., et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomaterialia. 141, 140-150 (2022).
  28. Yu, D., et al. Loss of beta epithelial sodium channel function in meibomian glands produces pseudohypoaldosteronism 1-like ocular disease in mice. American Journal of Pathology. 188 (1), 95-110 (2018).
  29. Mauris, J., et al. Loss of CD147 results in impaired epithelial cell differentiation and malformation of the meibomian gland. Cell Death & Disease. 6 (4), 1726 (2015).
  30. Ibrahim, O. M., et al. Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. PloS One. 9 (7), 99328 (2014).
  31. McMahon, A., Lu, H., Butovich, I. A. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Investigative Ophthalmology and Visual Science. 55 (5), 2832-2840 (2014).
  32. Miyake, H., Oda, T., Katsuta, O., Seno, M., Nakamura, M. Meibomian gland dysfunction model in hairless mice fed a special diet with limited lipid content. Investigative Ophthalmology and Visual Science. 57 (7), 3268-3275 (2016).
  33. Schaumberg, D. A., et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Investigative Ophthalmology and Visual Science. 52 (4), 1994-2005 (2011).
  34. Lee, S. Y., et al. Analysis of tear cytokines and clinical correlations in Sjogren syndrome dry eye patients and non-Sjogren syndrome dry eye patients. American Journal of Ophthalmology. 156 (2), 247-253 (2013).
  35. Nakae, S., et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 17 (3), 375-387 (2002).
  36. von Vietinghoff, S., Ley, K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. Journal of Immunology. 183 (2), 865-873 (2009).
  37. Langrish, C. L., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine. 201 (2), 233-240 (2005).
  38. Chen, Y., et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. Journal of Clinical Investigation. 116 (5), 1317-1326 (2006).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved