A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Neuroscience
* These authors contributed equally
Lysosomes frequently communicate with a variety of biomolecules to achieve the degradation and other diverse cellular functions. Lysosomes are critical to human brain function, as neurons are postmitotic and rely heavily on the autophagy-lysosome pathway to maintain cellular homeostasis. Despite advancements in the understanding of various lysosomal functions, capturing the highly dynamic communications between lysosomes and other cellular components is technically challenging, particularly in a high-throughput fashion. Here, a detailed protocol is provided for the recently published endogenous (knock-in) lysosome proximity labeling proteomic method in human induced pluripotent stem cell (hiPSC)-derived neurons.
Both lysosomal membrane proteins and proteins surrounding lysosomes within a 10-20 nm radius can be confidently identified and accurately quantified in live human neurons. Each step of the protocol is described in detail, i.e., hiPSC-neuron culture, proximity labeling, neuron harvest, fluorescence microscopy, biotinylated protein enrichment, protein digestion, LC-MS analysis, and data analysis. In summary, this unique endogenous lysosomal proximity labeling proteomics method provides a high-throughput and robust analytical tool to study the highly dynamic lysosomal activities in live human neurons.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved