A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol presents the synthesis of cyclic peptides via bisalkylation between cysteine and methionine and the facile thiol-yne reaction triggered by the propargyl sulfonium center.
In recent years, cyclic peptides have attracted increasing attention in the field of drug discovery due to their excellent biological activities, and, as a consequence, they are now used clinically. It is, therefore, critical to seek effective strategies for synthesizing cyclic peptides to promote their application in the field of drug discovery. This paper reports a detailed protocol for the efficient synthesis of cyclic peptides using on-resin or intramolecular (intermolecular) bisalkylation. Using this protocol, linear peptides were synthesized by taking advantage of solid-phase peptide synthesis with cysteine (Cys) and methionine (Met) coupled simultaneously on the resin. Further, cyclic peptides were synthesized via bisalkylation between Met and Cys using a tunable tether and an on-tether sulfonium center. The whole synthetic route can be divided into three major processes: the deprotection of Cys on the resin, the coupling of the linker, and the cyclization between Cys and Met in a trifluoroacetic acid (TFA) cleavage solution. Furthermore, inspired by the reactivity of the sulfonium center, a propargyl group was attached to the Met to trigger thiol-yne addition and form a cyclic peptide. After that, the crude peptides were dried and dissolved in acetonitrile, separated, and then purified by high-performance liquid chromatography (HPLC). The molecular weight of the cyclic peptide was confirmed by liquid chromatography-mass spectrometry (LC-MS), and the stability of the cyclic peptide combination with the reductant was further confirmed using HPLC. In addition, the chemical shift in the cyclic peptide was analyzed by 1H nuclear magnetic resonance (1H NMR) spectra. Overall, this protocol aimed to establish an effective strategy for synthesizing cyclic peptides.
Protein-protein interactions (PPIs)1 play a pivotal role in drug research and development. Constructing stabilized peptides with a fixed conformation by chemical means is one of the most important methods for developing mimetic motifs of PPIs2. To date, several cyclic peptides that target PPIs have been developed for clinical use3. Most peptides are constrained to an α-helix conformation to decrease the conformational entropy and improve the metabolic stability, target-binding affinity, and cell permeability4,5. In the past 2 decades, the side chains of Cys6,7, lysine8,9, tryptophan10, arginine11, and Met12,13 have been inserted into unnatural amino acids to fix the peptide into a cyclic conformation. Such cyclic peptides can target a unique chemical space or special sites, thereby triggering a covalent reaction to form protein-peptide covalent binding14,15,16,17. In a recent report by Yu et al., a chloroacetamide was anchored onto the domain of peptide ligands, ensuring a covalent conjugation reaction with excellent protein specificity18. Moreover, electrophilic warheads, such as acrylamide and aryl sulfonyl fluoride (ArSO2F), were further incorporated into peptides by Walensky et al.19 to form stabilized peptide covalent inhibitors and improve the anti-tumor effect of peptide inhibitors. Therefore, it is very important to introduce an additional functional group in order to covalently modify protein-peptide ligands20. These groups not only react with proteins on the side chain but also stabilize the secondary structure of the peptide21. However, the application of covalently modified proteins induced by peptide ligands is limited due to the complicated synthetic route and the non-specific binding of the chemical groups22,23. Effective strategies for the synthesis of cyclic peptides are, therefore, urgently required.
Inspired by the multifarious strategies of cyclic peptides2,24,25,26, this protocol attempts to develop a simple and efficient method for stabilizing peptides. In addition, we noted that the side chain group of a stable peptide could react covalently with a target protein when it was spatially close to the peptide ligands. The lack of chemically modified Met was filled by the Deming group in 2013 by developing a novel method for producing selectively modified peptide methionine27. Based on this background, the Shi et al. focused on the development of the ring closure of side chains to form a sulfonium salt center. When the peptide ligand combines with the target protein, the sulfonium salt group reacts covalently with the spatially close Cys protein. In recent years, the Shi et al. have designed a new method for stabilizing cyclic peptide28. The sulfonium salt on the cyclic peptide was reduced by a reducing agent with a sulfhydryl group that was reversibly reduced to Met. However, the reaction had low efficiency, which was harmful to subsequent biological application studies. In the current study, a Met-Cys and propargyl bromide-Cys ring-closure reaction was designed, with a single sulfonium salt remaining on the side chain of the cyclic peptide. The sulfonium salt acted as a new warhead that reacted covalently with the protein Cys under spatial proximity. Briefly, a Cys and Met mutated peptide was cyclized by intramolecular alkylation, resulting in the generation of an on-tether sulfonium center. In this process, the formation of a side chain bridge was critical for cyclic peptides. Overall, this protocol describes a detailed sulfonium-based peptide cyclization that is achieved using simple reaction conditions and operations. The aim is to develop a potential method for further broad biological applications.
1. Equipment preparation
CAUTION: Morpholine, N,N-dimethylformamide (DMF), dichloromethane (DCM), N,N-diisopropylethylamine (DIPEA), TFA, morpholine, piperidine, diethyl ether, and methanol are toxic, volatile, and corrosive. These reagents can harm the human body through inhalation, ingestion, or skin contact. For all chemical experiments, use protective equipment, including disposable gloves, experimental coats, and protective eyeglasses.
2. Resin preparation
NOTE: Choose the amount of loaded resin according to the length of the coupling peptide.
3. N-terminal Fmoc deprotection
NOTE: Deprotection by morpholine requires 30 min, and deprotection by piperidine takes 5 min.
4. Coupling the linear peptide (Figure 2)
NOTE: When the synthetic peptide sequences contain two or more repeating units, the coupling procedure can be directly carried out by selecting the amino acid type, such as Fmoc-AA-OH or Fmoc-AAA-OH, and so on. Some special amino acids with steric hindrance and peptides with longer amino acid sequences are required to properly extend the reaction time for coupling.
5. Bisalkylation between Met and Cys (Figure 3)
6. Propargyl sulfonium salt cyclization (Figure 4)
7. Purification of cyclic peptides
All the linear peptides were synthesized on Rink-amide MBHA resin by standard manual Fmoc solid-phase synthesis. A model cyclic hexapeptide (Ac (cyclo-I)-WMAAAC-NH2) was constructed as described in Figure 5A. Notably, a new on-tether chiral center was generated by Met alkylation, with the two epimers of cyclic peptide (Ia, Ib) confirmed by reverse-phase HPLC. Further, the conversion and ratio of epimers were determined using the integration of reverse-phase HPLC. Cyclic Ac-(cyclo-...
The synthetic approach described in this paper provides a method for synthesizing cyclic peptides using Cys and Met in the peptide sequence, in which the basic linear peptides are constructed by common solid-phase peptide synthesis techniques. For the bisalkylation of cyclic peptides between Cys and Met, the whole synthetic route can be divided into three major processes: the deprotection of Cys on the resin, the coupling of the linker, and the cyclization between Cys and Met in a trifluoroacetic acid cleavage solution. ...
The authors have nothing to disclose.
We acknowledge financial support from the National Key R&D Program of China (2021YFC2103900); the Natural Science Foundation of China grants (21778009, and 21977010); the Natural Science Foundation of Guangdong Province (2022A1515010996 and 2020A1515010521): the Shenzhen Science and Technology Innovation Committee, (RCJC20200714114433053, JCYJ201805081522131455, and JCYJ20200109140406047); and the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions grant (2019SHIBS0004). The authors acknowledge journal support from Chemical Science, The Royal Society of Chemistry for reference 30 and The Journal of Organic Chemistry, American Chemical Society, for reference 31.
Name | Company | Catalog Number | Comments |
1,3-bis(bromomethyl)-benzen | Energy | D0215 | |
1,3-Dimethylbarbituric acid | Energy | A46873 | |
1H NMR and HSQC | Bruker | AVANCE-III 400 | |
1-Hydroxybenzotriazole hydrate | Energy | E020543 | |
2-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) | Energy | A1797 | |
2-mercaptopyridine | Energy | Y31130 | |
6-Aminocaproic acid | Energy | A010678 | |
Acetic anhydride | Energy | A01021454 | |
Acetonitrile | Aldrich | 9758 | |
Ammonium carbonate | Energy | 12980 | |
Dichloromethane (DCM) | Energy | W330229 | |
Digital Heating Cooling Drybath | Thermo Scientific | 88880029 | |
Diisopropylethylamine (DIPEA) | Energy | W320014 | |
Dimethyl formamide (DMF) | Energy | B020051 | |
Dithiothreitol | Energy | A10027 | |
Electrospray Ionization Mass | SHIMADZU2020 | LC-MS2020 | |
Fmoc-Ala-OH | Nanjing Peptide Biotech Ltd | R30101 | |
Fmoc-Arg(Pbf)-OH | Nanjing Peptide Biotech Ltd | R30201 | |
Fmoc-Cys(Trt)-OH | Nanjing Peptide Biotech Ltd | R30501 | |
Fmoc-Gln(Trt)-OH | Nanjing Peptide Biotech Ltd | R30601 | |
Fmoc-Glu(OtBu)-OH | Nanjing Peptide Biotech Ltd | R30701 | |
Fmoc-His(Boc)-OH | Nanjing Peptide Biotech Ltd | R30902 | |
Fmoc-Ile-OH | Nanjing Peptide Biotech Ltd | R31001 | |
Fmoc-Lys(Boc)-OH | Nanjing Peptide Biotech Ltd | R31201 | |
Fmoc-Met-OH | Nanjing Peptide Biotech Ltd | R31301 | |
Fmoc-Pro-OH | Nanjing Peptide Biotech Ltd | R31501 | |
Fmoc-Ser(tBu)-OH | Nanjing Peptide Biotech Ltd | R31601 | |
Fmoc-Thr(tBu)-OH | Nanjing Peptide Biotech Ltd | R31701 | |
Fmoc-Trp(Boc)-OH | Nanjing Peptide Biotech Ltd | R31801 | |
Fmoc-Tyr(tBu)-OH | Nanjing Peptide Biotech Ltd | R31901 | |
Fmoc-Val-OH | Nanjing Peptide Biotech Ltd | R32001 | |
Formic acid | Energy | W810042 | |
High Performance Liquid Chromatography | SHIMADZU | LC-2030 | |
Methanol | Aldrich | 9758 | |
Morpholine | Aldrich | M109062 | |
N,N'-Diisopropylcarbodiimide | Energy | B010023 | |
Ninhydrin Reagent | Energy | N7285 | |
Propargyl bromide | Energy | W320293 | |
Rink Amide MBHA resin | Nanjing Peptide Biotech Ltd. | ||
Solid Phase Extraction (SPE) Sample Collection Plates | Thermo Scientific | 60300-403 | |
Tetrakis(triphenylphosphine) palladium | Energy | T1350 | |
Three-way stopcocks | Bio-Rad | 7328107 | |
Triethylamine | Energy | B010737 | |
Trifluoroacetic acid (TFA) | J&K | 101398 | |
Triisopropylsilane (TIS) | Energy | T1533 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved