A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
The present work describes a novel experimental protocol that utilizes a 3D printed holder to enable high-resolution live cell imaging of enucleated globes. Through this protocol, the cellular calcium signaling activity in wounded corneal epithelium from ex vivo globes can be observed in real time.
Corneal epithelial wound healing is a migratory process initiated by the activation of purinergic receptors expressed on epithelial cells. This activation results in calcium mobilization events that propagate from cell to cell, which are essential for initiating cellular motility into the wound bed, promoting efficient wound healing. The Trinkaus-Randall lab has developed a methodology for imaging the corneal wound healing response in ex vivo murine globes in real time. This approach involves enucleating an intact globe from a mouse that has been euthanized per established protocols and immediately incubating the globe with a calcium indicator dye. A counterstain that stains other features of the cell can be applied at this stage to assist with imaging and show cellular landmarks. The protocol worked well with several different live cell dyes used for counterstaining, including SiR actin to stain actin and deep red plasma membrane stain to stain the cell membrane. To examine the response to a wound, the corneal epithelium is injured using a 25 G needle, and the globes are placed in a 3D printed holder. The dimensions of the 3D printed holder are calibrated to ensure immobilization of the globe throughout the duration of the experiment and can be modified to accommodate eyes of different sizes. Live cell imaging of the wound response is performed continuously at various depths throughout the tissue over time using confocal microscopy. This protocol allows us to generate high-resolution, publication-quality images using a 20x air objective on a confocal microscope. Other objectives can also be used for this protocol. It represents a significant improvement in the quality of live cell imaging in ex vivo murine globes and permits the identification of nerves and epithelium.
Cornea
The cornea is a clear, avascular structure covering the anterior surface of the eye that refracts light to enable vision and protects the interior of the eye from damage. As the cornea is exposed to the environment, it is susceptible to damage from both mechanical causes (scratching) and from infection. A corneal injury in an otherwise healthy patient typically heals within 1-3 days. However, in patients with underlying conditions including limbal stem cell deficiency and type II diabetes, the corneal wound healing process can be greatly prolonged1. As the cornea is highly innervated, these non-healing corneal ulce....
The procedures involving animal subjects were approved by the Association for Research in Vision and Ophthalmology for the Use of Animals in Ophthalmic Care and Vision Research and the Boston University IACUC protocol (201800302).
1. Designing the 3D printed holders and cover bar
This protocol has been used to consistently produce publication-quality data and images10. The images obtained represent a significant improvement when compared to previous approaches (Figure 2). Using the 3D printed holder, images can be captured throughout the layers of the cornea, and calcium mobilization in different z-planes can be observed (Figure 3). This approach has been used to compare cell-cell signaling between apical and basa.......
This protocol describes a live cell imaging technique that uses a 3D printed holder to stabilize and immobilize intact animal eyes. It is designed to circumvent several significant disadvantages recognized with previous live cell imaging protocols of ex vivo corneal tissue. This protocol offers many advantages for the live cell imaging of intact globes. It significantly reduces unnecessary tissue damage that could interfere with the wound healing response to experimentally induced scratch wounds. This inclu.......
We would like to acknowledge the NIH for the following grant support: RO1EY032079 (VTR), R21EY029097-01 (VTR), 1F30EY033647-01 (KS), and 5T32GM008541-24 (KS). We would also like to acknowledge the Massachusetts Lions Eye Research Fund and the New England Corneal Transplant Fund.
....Name | Company | Catalog Number | Comments |
1.75 blue polylactic acid (PLA) plastic | Creality (Shenzen, China) | N/A | Material for holder |
35 mm Dish, No. 1.5 Coverslip, 14 mm glass diameter, Poly-D-Lysine Coated | MatTek Corporation (Ashland, MA) | P35GC-1.5-14-C | Well for imaging. |
Autodesk Fusion 360 software | Autodesk (San Rafael, CA). | N/A | Software used for printing the holders. |
BD 25 G 7/8 sterile needles single use 100 needles/box | Thermo Fisher Scientific (Waltham, MA) | 305124 | For experimentally-induced wounds to the globes |
CellMask DeepRed | Invitrogen (Carlsbad, CA) | C10046 | Cell membrane counterstain. Calcium indicator. 1:10,000 concentration with a final concentration of 1%(v/v) DMSO and 0.1% (w/v) pluronic acid |
Complete Home Super Glue | Walgreens (Deerfield, IL) | N/A | For attaching the holder to the imaging well |
Ender 3 Pro 3D printer | Creality (Shenzen, China) | N/A | For printing the holder |
FIJI/ImageJ | ImageJ (Bethesda, MD) | License Number: GPL2 | Softwareused for confirming consistency of wound depth and diameter between independent globes using Region of Interest analysis |
Fluo-4 | Invitrogen (Carlsbad, CA) | F14201 | Calcium indicator. 1:100 concentration with a final concentration of 1%(v/v) DMSO and 0.1% (w/v) pluronic acid |
Keratinocyte Serum-Free Medium | Gibco (Waltham, MA) | 17005042 | 25 mg/mL bovine pituitary extract, 0.02 nM EGF, 0.3 mM CaCl2, and penicillin-streptomycin (100 units/mL, 100 µg/mL, respectively) added to medium |
Phophate-Buffered Saline (PBS) | Corning, Medlabtech (Manassas, VA) | 21-040-CV | Used to wash excess stain off of corneas before imaging |
Zeiss Confocal 880 Microscope with AiryScan | Zeiss (Thornwood, NY) | N/A | 20x magnification objective was used |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved