È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.

In questo articolo

  • Riepilogo
  • Abstract
  • Introduzione
  • Protocollo
  • Risultati
  • Discussione
  • Divulgazioni
  • Riconoscimenti
  • Materiali
  • Riferimenti
  • Ristampe e Autorizzazioni

Riepilogo

Il test del micronucleo (MN) è un test ben consolidato per quantificare il danno al DNA. Tuttavia, la valutazione del test utilizzando tecniche convenzionali come la microscopia manuale o l'analisi delle immagini basata sulle caratteristiche è laboriosa e impegnativa. Questo articolo descrive la metodologia per sviluppare un modello di intelligenza artificiale per valutare il test MN utilizzando i dati di citometria a flusso di imaging.

Abstract

Il test del micronucleo (MN) viene utilizzato in tutto il mondo dagli organismi di regolamentazione per valutare le sostanze chimiche per la tossicità genetica. Il test può essere eseguito in due modi: segnando MN in cellule binucleate una volta divise, bloccate dalla citochinesi o cellule mononucleate completamente divise. Storicamente, la microscopia ottica è stata il metodo gold standard per valutare il test, ma è laboriosa e soggettiva. La citometria a flusso è stata utilizzata negli ultimi anni per valutare il test, ma è limitata dall'incapacità di confermare visivamente aspetti chiave delle immagini cellulari. La citometria a flusso di imaging (IFC) combina l'acquisizione di immagini ad alta produttività e l'analisi automatizzata delle immagini ed è stata applicata con successo per acquisire rapidamente immagini e valutare tutti gli eventi chiave nel test MN. Recentemente, è stato dimostrato che i metodi di intelligenza artificiale (AI) basati su reti neurali convoluzionali possono essere utilizzati per valutare i dati del saggio MN acquisiti da IFC. Questo documento descrive tutti i passaggi per utilizzare il software di intelligenza artificiale per creare un modello di deep learning per valutare tutti gli eventi chiave e applicare questo modello per assegnare automaticamente un punteggio a dati aggiuntivi. I risultati del modello di deep learning AI si confrontano bene con la microscopia manuale, consentendo quindi un punteggio completamente automatizzato del test MN combinando IFC e AI.

Introduzione

Il test del micronucleo (MN) è fondamentale nella tossicologia genetica per valutare il danno al DNA nello sviluppo di cosmetici, prodotti farmaceutici e chimici per uso umano 1,2,3,4. I micronuclei sono formati da interi cromosomi o frammenti cromosomici che non si incorporano nel nucleo dopo la divisione e si condensano in piccoli corpi circolari separati dal nucleo. Pertanto, il MN può essere utilizzato come endpoint per quantificare il danno al DNA nei test di genotossicità1.

Il metodo ....

Protocollo

1. Acquisizione dati mediante citometria a flusso di imaging

NOTA: Fare riferimento a Rodrigues et al.16 con le seguenti modifiche, notando che le regioni di acquisizione utilizzando IFC potrebbero dover essere modificate per un'acquisizione ottimale dell'immagine:

  1. Per il metodo non-Cyt-B, eseguire un conteggio delle cellule utilizzando un contatore di cellule disponibile in commercio seguendo le istruzioni del produttore (vedere la tabella dei materiali) su ciascuna coltura immediatamente prima della coltura e immediatamente dopo il periodo di recupero.
  2. Se si ese....

Risultati

La Figura 1 mostra il flusso di lavoro per l'utilizzo del software AI per creare un modello per il test MN. L'utente carica i file .daf desiderati nel software AI, quindi assegna gli oggetti alle classi del modello di verità di terra utilizzando gli algoritmi di tagging cluster assistito da AI (Figura 2) e predict (Figura 3). Una volta che tutte le classi del modello di verità di base sono state popolate con oggetti sufficienti, i.......

Discussione

Il lavoro qui presentato descrive l'uso di algoritmi di deep learning per automatizzare il punteggio del test MN. Diverse pubblicazioni recenti hanno dimostrato che strumenti intuitivi e interattivi consentono la creazione di modelli di deep learning per analizzare i dati delle immagini senza la necessità di conoscenze computazionali approfondite18,19. Il protocollo descritto in questo lavoro utilizzando un pacchetto software basato sull'interfaccia utente è st.......

Divulgazioni

Gli autori sono impiegati da Luminex Corporation, una società DiaSorin, il produttore del citometro a flusso di imaging ImageStream e del software Amnis AI utilizzato in questo lavoro.

Riconoscimenti

Nessuno.

....

Materiali

NameCompanyCatalog NumberComments
15 mL centrifuge tubeFalcon352096
Cleanser - Coulter Clenz Beckman Coulter8546931Fill container with 200 mL of Cleanser.  https://www.beckmancoulter.com/wsrportal/page/itemDetails?itemNumber=8546931#2/10//0/25/
1/0/asc/2/8546931///0/1//0/
ColchicineMilliporeSigma64-86-8
Corning bottle-top vacuum filter MilliporeSigmaCLS4307690.22 µm filter, 500 mL bottle
Cytochalasin BMilliporeSigma14930-96-25 mg bottle
Debubbler - 70% IsopropanolMilliporeSigma1.3704Fill container with 200 mL of Debubbler.  http://www.emdmillipore.com/US/en/product/2-Propanol-70%25-%28V%2FV%29-0.1-%C2%B5m-filtred,MDA_CHEM-137040?ReferrerURL=https%3A%2F%2Fwww.google.com%2F
Dimethyl Sulfoxide (DMSO)MilliporeSigma67-68-5
Dulbecco's Phosphate Buffered Saline 1XEMD MilliporeBSS-1006-BPBS Ca++MG++ Free 
Fetal Bovine SerumHyCloneSH30071.03
Formaldehyde, 10%, methanol free, Ultra PurePolysciences, Inc.04018This is what is used for the 4% and 1% Formalin. CAUTION: Formalin/Formaldehyde toxic by inhalation and if swallowed.  Irritating to the eyes, respiratory systems and skin.  May cause sensitization by inhalation or skin contact. Risk of serious damage to eyes.  Potential cancer hazard.  http://www.polysciences.com/default/catalog-products/life-sciences/histology-microscopy/fixatives/formaldehydes/formaldehyde-10-methanol-free-pure/
Guava Muse Cell AnalyzerLuminex0500-3115A standard configuration Guava Muse Cell Analyzer was used.
Hoechst 33342Thermo FisherH357010 mg/mL solution
MannitolMilliporeSigma69-65-8
MEM Non-Essential Amino Acids 100XHyCloneSH30238.01
MIFC - ImageStreamX Mark IILuminex, a DiaSorin company100220A 2 camera ImageStreamX Mark II eqiped with the 405 nm, 488 nm, and 642 nm lasers was used.
MIFC analysis software - IDEASLuminex, a DiaSorin company100220"Image analysis sofware"
The companion software to the MIFC (ImageStreamX MKII)
MIFC software - INSPIRELuminex, a DiaSorin company100220"Image acquisition software"
This is the software that runs the MIFC (ImageStreamX MKII)
Amnis AI softwareLuminex, a DiaSorin company100221"AI software"
This is the software that permits the creation of artificial intelligence models to analyze data
Mitomycin CMilliporeSigma50-07-7
NEAA Mixture 100xLonza BioWhittaker13-114E
Penicllin/Streptomycin/Glutamine solution 100XGibco15070063
Potassium Chloride (KCl)MilliporeSigmaP9541
Rinse - Ultrapure water or deionized waterNANAUse any ultrapure water or deionized water.  Fill container with 900 mL of Rinse.
RNaseMilliporeSigma9001-99-4
RPMI-1640 Medium 1xHyCloneSH30027.01
Sheath - PBSMilliporeSigmaBSS-1006-BThis is the same as Dulbecco's Phosphate Buffered Saline 1x  Ca++MG++ free.  Fill container with 900 mL of Sheath.
Sterile waterHyCloneSH30529.01
Sterilizer - 0.4%–0.7% HypochloriteVWRJT9416-1This is assentually 10% Clorox bleach that can be made by deluting Clorox bleach with water.  Fill container with 200 mL of Sterilzer.
T25 flaskFalcon353109
T75 flaskFalcon353136
TK6 cellsMilliporeSigma95111735

Riferimenti

Ristampe e Autorizzazioni

Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE

Richiedi Autorizzazione

Esplora altri articoli

BioingegneriaNumero 191saggio del micronucleogenotossicitcitotossicitcitometria a flusso di imaginganalisi delle immaginiapprendimento automaticointelligenza artificiale

This article has been published

Video Coming Soon

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati